Advertisement

Moscow University Mathematics Bulletin

, Volume 74, Issue 3, pp 87–97 | Cite as

Description of Degenerate Two-Dimensional Singularities with Single Critical Point

  • I. M. NikonovEmail author
Article

Abstract

Formulas calculating the number of degenerate atoms with one singular point are obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The work was supported by program “Leading Scientific Schools of the Russian Federation” (project NSh-6399.2018.1) and by the Russian Foundation for Basic Research (project no. 16-01-00378-a).

References

  1. 1.
    A. T. Fomenko, “Morse Theory of Integrable Hamiltonian Systems,” Doklady Akad. Nauk SSSR 287(5), 1071 (1986) [Soviet Math. Doklady 33 (2), 502 (1986)].MathSciNetGoogle Scholar
  2. 2.
    A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems. Geometry, Topology, Classification, Vol. 1, 2 (Izd. Dom “Udmurdsk. Univ.”, Izhevsk, 1999; Chapman and Hall. A CRC Press Comp., Boca Raton, L., N.Y., Washington, 2004).zbMATHGoogle Scholar
  3. 3.
    A. Khruzin, “Enumeration of Chord Diagrams,” URL: arxiv.org/abs/math.CO/008209, (1998).Google Scholar
  4. 4.
    T. O. Manoilo, M. I. Sira, and O. A. Kadubovski, “On the Number of Non-Isomorphic and Non-Equivalent Chord Diagrams,” Poshuky i Zakhidky 1(10), 61 (2010) [in Ukrainian].Google Scholar
  5. 5.
    J. Sevada, “A Fast Algorithm to Generate Necklace with Fixed Content,” Theor. Comp. Sci. 301, 477 (2003).MathSciNetCrossRefGoogle Scholar
  6. 6.
    R. Gori and M. Marcus, “Counting Non-Isomorphic Chord Diagrams”, Theor. Comp. Sci. 204, 55 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    V. O. Manturov, “Atoms, Height Atoms, Chord Diagrams and Knots. Enumeration of Low Complexity Atoms by means of Mathematica 3.0,” in: Topological Methods in Hamiltonian Systems Theory, ed. by A. V. Bolsinov, A. T. Fomenko and A. I. Shafarevich (“Factorial”, Moscow, 1998), pp. 203–212.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Faculty of Mechanics and MathematicsMoscow State UniversityLeninskie Gory, MoscowRussia

Personalised recommendations