Moscow University Chemistry Bulletin

, Volume 74, Issue 5, pp 236–240 | Cite as

Synthesis and Antimicrobial Activity of N-(Indolyl)trifluoroacetamides

  • I. S. Stepanenko
  • S. A. YamashkinEmail author
  • A. I. Kot’kin
  • M. A. Yurovskaya


A method for the synthesis of the corresponding trifluoroacetamides based on 2,3-dimethyl-, 1,2,3-trimethyl-7-aminoindoles and ethyl ester of trifluoroacetic acid is developed. The compounds obtained are screened for antimicrobial activity using the standard strains of the Staphylococcus aureus 29213, Escherichia coli 25922, Pseudomonas aeruginosa 27853, Streptococcus pyogenes 1238, and Klebsiella pneumonia 9172; and the antimicrobial activity comparable to dioksidin, a widely used antimicrobial drug, is demonstrated.


The reaction of heteroaromatic amines with ethyl ether of trifluoroacetic acid the synthesis of N‑(indolyl)-2,2,2-trifluoroacetamides antimicrobial activity of N-(indolyl) trifluoroacetamides 



This article does not contain any research using animals as objects.


The authors declare that there is no conflict of interest.


  1. 1.
    Yamashkin, S.A., Pozdnyakova, O.V., and Yurovskaya, M.A., Moscow Univ. Chem. Bull. (Engl. Transl.), 2014, vol. 69, no. 1, p. 31.CrossRefGoogle Scholar
  2. 2.
    Yamashkin, S.A., Zhukova, N.V., and Romanova, I.S., Chem. Heterocycl. Compd., 2008, vol. 44, no. 7, p. 793.CrossRefGoogle Scholar
  3. 3.
    Kadimaliev, D.A., Stepanenko, I.S., Nadezhina, O.S., and Yamashkin, S.A., Mikol. Fitopatol., 2014, vol. 48, no. 5, p. 309.Google Scholar
  4. 4.
    Stepanenko, I.S., Kot’kin, A.I., and Yamashkin, S.A., Probl. Med. Mikol., 2015, vol. 17, no. 3, p. 135.Google Scholar
  5. 5.
    Kay, C.W.M., Mennenga, B., Görisch, H., and Bittl, R., J. Biol. Chem., 2006, vol. 281, no. 3, p. 1470.CrossRefGoogle Scholar
  6. 6.
    Stepanenko, I.S., Kot’kin, A.I., and Yamashkin, S.A., Fundam. Issled.: Khim. Nauki, 2013, no. 8, p. 1406.Google Scholar
  7. 7.
    Alyamkina, E.A., Stepanenko, I.S., Yamashkin, S.A., and Yurovskaya, M.A., Moscow Univ. Chem. Bull. (Engl. Transl.), 2017, vol. 72, no. 1, p. 24.CrossRefGoogle Scholar
  8. 8.
    Khmel’nitskii, R.A., Chem. Heterocycl. Compd., 1974, vol. 10, no. 3, p. 253.CrossRefGoogle Scholar
  9. 9.
    Terent’ev, P.B., Mass-spektrometriya v organicheskoi khimii (Mass Spectrometry in Organic Chemistry), Moscow: Vysshaya Shkola, 1979.Google Scholar
  10. 10.
    Lebedev, A.T., Mass-spektrometriya v organicheskoi khimii (Mass Spectrometry in Organic Chemistry), Moscow: BINOM, 2010.Google Scholar
  11. 11.
    Padeiskaya, E.N., Infekts.Antimikrob. Ter., 2001, vol. 3, no. 5, p. 105.Google Scholar
  12. 12.
    Stephens, P.J., Devlin, F.J., Chablowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, p. 11623.CrossRefGoogle Scholar
  13. 13.
    Hehre, W.J., Ditchfield, R., and Pople, J.A., J. Chem. Phys., 1972, vol. 56, p. 2257.CrossRefGoogle Scholar
  14. 14.
    Neese, F., Mol. Sci., 2012, vol. 2, no. 1, p. 73.CrossRefGoogle Scholar
  15. 15.
    MUK (Methodological Guideline) 4.2.1890-04: Determination of the sensitivity of microorganisms to antibacterial preparations, Klin. Mikrobiol. Antimikrob. Khimioter., 2004, vol. 6, no. 4.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • I. S. Stepanenko
    • 1
  • S. A. Yamashkin
    • 2
    Email author
  • A. I. Kot’kin
    • 2
  • M. A. Yurovskaya
    • 3
  1. 1.Ogarev Mordovia State UniversitySaranskRussia
  2. 2.Evseviev Mordovian State Pedagogical InstituteSaranskRussia
  3. 3.Department of Organic Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations