Advertisement

Moscow University Chemistry Bulletin

, Volume 74, Issue 5, pp 246–256 | Cite as

Regularities of Chlorination of the Detonation NanoDiamond Surface

  • I. I. KulakovaEmail author
  • A. Yu. Pereyaslavcev
  • G. V. Lisichkin
Article
  • 8 Downloads

Abstract

The published and the authors’ own data on the methods of chlorination of the surface of diamond micropowders are critically assessed. The features of different methods of chlorination of detonation nanodiamond (DND) are compared; the optimum process conditions are revealed. The method of gas-phase chlorination with molecular chlorine at elevated temperatures is preferable when using DND in biomedical applications; this method also helps lower the concentration of metal impurities. The use of thionyl chloride and sulfuryl chloride results in the contamination of DND-Cl samples with sulfur. It is shown that the DND-Cl samples have satisfactory hydrolytic stability.

Keywords:

detonation nanodiamond surface chlorination molecular chlorine sulfuryl chloride thionyl chloride 

Notes

FUNDING

This work was supported by the Russian Foundation for Basic Research, project no. 16-08-01156. The scientific equipment used was acquired with funds from the Development Program of Moscow State University.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    Dolmatov, V.Yu., Detonatsionnye nanoalmazy.Poluchenie, svoistva, primenenie (Detonation Nanodiamonds: Preparation, Properties, and Application), St. Petersburg: Professional, 2011.Google Scholar
  2. 2.
    Detonatsionnye nanoalmazy. Tekhnologiya, struktura, svoistva i primeneniya (Detonation Nanodiamonds: Technology, Structure, Properties, and Applications), Vul’, A.Ya. and Shenderova, O.A., Eds., Moscow: Fiz.-Tekh. Inst. im. A.F. Ioffe, 2016.Google Scholar
  3. 3.
    Applications in Biology and Nanoscale Medicine, Ho, D., Ed., New York: Springer, 2010.Google Scholar
  4. 4.
    Shugalei, I.V., Ilyushin, M.A., and Sudarikov, A.M., Russ. J. Gen. Chem., 2014, vol. 84, no. 13, p. 2539.CrossRefGoogle Scholar
  5. 5.
    Shugalei, I.V., Voznyakovskii, A.P., Garabadzhiu, A.V., Tselinskii, I.V., Sudarikov, A.M., and Ilyushin, M.A., Russ. J. Gen. Chem., 2013, vol. 83, no. 5, p. 851.CrossRefGoogle Scholar
  6. 6.
    Detonation Nanodiamonds: Science and Applications, Vul’, A. and Shenderova, O., Eds., Boca Raton, FL: CRC, 2014.Google Scholar
  7. 7.
    Carbon Nanomaterials Sourcebook: Graphene, Fullerenes, Nanotubes, and Nanodiamond, Sattler, K.D., Ed., Boca Raton, FL: CRC, 2016, vol. 1.Google Scholar
  8. 8.
    Purtov, K.V., Puzyr, A.P., Burov, A.E., Bondar, V.S., and Petunin, A.I., Nanotechnol. Russ., 2011, vol. 6, nos. 3–4, p. 256.CrossRefGoogle Scholar
  9. 9.
    Yakovlev, R.Yu., Solomatin, A.S., Leonidov, N.B., Osipova, A.S., Kulakova, I.I., Murav’eva, G.P., and Lisichkin, G.V., Russ. J. Gen. Chem., 2015, vol. 85, no. 6, p. 1565.CrossRefGoogle Scholar
  10. 10.
    Lisichkin, G.V., Korolkov, V.V., Kulakova, I.I., Tarasevich, B.N., and Karpuhin, A.V., Russ. Chem. Bull., 2006, vol. 55, no. 12, p. 2212.CrossRefGoogle Scholar
  11. 11.
    Korolkov, V.V., Kulakova, I.I., Tarasevich, B.N., and Lisichkin, G.V., J. Superhard Mater., 2006, no. 2, p. 12.Google Scholar
  12. 12.
    Sappok, R. and Boehm, H.P., Carbon, 1968, vol. 6, no. 3, p. 283.CrossRefGoogle Scholar
  13. 13.
    Khabashesku, V.N., Margrave, J.L., and Barrera, E.V., Diamond Relat. Mater., 2005, vol. 14, no. 3.Google Scholar
  14. 14.
    Ando, T., Nishitani-Gamo, M., Rawles, R., Yamamoto, K., Kamo, M., and Sato, Y., Diamond Relat. Mater., 1996, vol. 5, no. 10, p. 1136.CrossRefGoogle Scholar
  15. 15.
    Miller, J., Brown, B., and Duncan, W., Langmuir, 1996, vol. 12, no. 24, p. 5809.CrossRefGoogle Scholar
  16. 16.
    Sotova, K.-I., Amamoto, T., Sobana, A., Kusakabe, K., and Imato, T., Diamond Relat. Mater., 2004, vol. 13, no. 1, p. 145.CrossRefGoogle Scholar
  17. 17.
    Spitsyn, B.V., Davidson, J.L., Gradoboev, M.N., Serebryakova, N.V., Karpukhina, N.F., Kulakova, I.I., and Melnik, N.N., Diamond Relat. Mater., 2006, vol. 15, nos. 2–3, p. 296.CrossRefGoogle Scholar
  18. 18.
    Ikeda, Y., Saito, T., Kusakabe, K., Morooka, S., Maeda, H., Taniguchi, Y., and Fujiwara, Y., Diamond Relat. Mater., 1998, vol. 7, no. 6, p. 830.CrossRefGoogle Scholar
  19. 19.
    Saito, T., Ikeda, Y., Egawa, S., Kusakabe, K., Morooka, S., Maeda, H., Taniguchi, Y., and Fujiwara, Y., J. Chem. Soc., Faraday Trans., 1998, vol. 94, no. 7, p. 929.CrossRefGoogle Scholar
  20. 20.
    Tsubota, T., Urabe, K., Egawa, S., Takagi, H., Kusakabe, K., Morooka, S., and Maeda, H., Diamond Relat. Mater., 2000, vol. 9, no. 2, p. 219.CrossRefGoogle Scholar
  21. 21.
    Sotova, K.-I., Amamoto, T., Sobana, A., Kusakabe, K., and Imato, T., Diamond Relat. Mater., 2004, vol. 13, no. 1, p. 145.CrossRefGoogle Scholar
  22. 22.
    Lisichkin, G.V., Kulakova, I.I., Gerasimov, Yu.A., Karpukhin, A.V., and Yakovlev, R.Yu., Mendeleev Commun., 2009, vol. 19, no. 6, p. 309.CrossRefGoogle Scholar
  23. 23.
    Denisov, S.A., Extended Abstract of Cand. Sci. Dissertation, Moscow: Frumkin Inst. Phys. Chem. Electrochem., Russ. Acad. Sci., 2013.Google Scholar
  24. 24.
    Yakovlev, R.Y., Solomatin, A.S., Kulakova, I.I., Lisichkin, G.V., Korolev, K.M., and Leonidov, N.B., RF Patent 2506095, 2012.Google Scholar
  25. 25.
    Klimova, V.A., Osnovnye mikrometody analiza organi-cheskikh soedinenii (Basic Micromethods for Analysis of Organic Compounds), Moscow: Khimiya, 1975.Google Scholar
  26. 26.
    Smirnov, E.P. and Gordeev, S.K., Almazy: poluchenie, svoistva, primenenie (Diamonds: Obtaining, Properties, and Application), Leningrad: Len. Tekhn. Inst. im. Lensoveta, 1984.Google Scholar
  27. 27.
    Knickerbocker, T., Strother, T., Schwartz, M.P., Russell, J.N., Jr., Butler, J., Smith, L.M., and Hamers, R.J., Langmuir, 2003, vol. 19, no. 6, p. 1938.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • I. I. Kulakova
    • 1
    Email author
  • A. Yu. Pereyaslavcev
    • 2
  • G. V. Lisichkin
    • 1
  1. 1.Department of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Dukhov Research Institute of AutomaticsMoscowRussia

Personalised recommendations