Moscow University Chemistry Bulletin

, Volume 74, Issue 3, pp 111–115 | Cite as

Crucible Atomizers Open Up New Opportunities for the Atomic Absorption Analysis of Trace Elements in Solid Samples with the Use of Fractional Evaporation

  • V. N. Oreshkin
  • G. I. TsisinEmail author


The atomic absorption analysis of trace elements in natural solid samples with the use of an improved crucible atomizer with several condensation/evaporation zones is shown to be advantageous. A new approach to fractional preconcentration is proposed, including two stages of thermal decomposition (high-temperature and low-temperature) of solid sample components when elements are evaporated and their vapors are condensed in heated and unheated zones. This approach facilitates the efficient suppression of non-selective interferences and matrix effects. It also improves the metrological characteristics of the element analysis of samples of complex composition.


electrothermal atomic absorption analysis crucible atomizers fractional evaporation 



G. Tsisin thanks the Russian Foundation for Basic Research (project no. 18-03-00289-a) for supporting the element preconcentration study with the use of the DETATA sorbent.


  1. 1.
    L’vov, B.V., J. Anal. Chem., 2005, vol. 60, no. 4, p. 382.CrossRefGoogle Scholar
  2. 2.
    Pupyshev, A.A., Atomno-absorbtsionnyi spektral’nyi analiz (Atomic Absorption Spectral Analysis), Moscow: Tekhnosfera, 2009.Google Scholar
  3. 3.
    Volynskii, A.B., J. Anal. Chem., 2011, vol. 66, no. 11, p. 1049.CrossRefGoogle Scholar
  4. 4.
    Kuz’min, N.M. and Zolotov, Yu.A., Kontsentrirovanie sledov elementov (Preconcentration of Trace Elements), Moscow: Nauka, 1988.Google Scholar
  5. 5.
    Spektral’nyi analiz chistykh veshchestv (Spectral Analysis of Pure Substances), Zil’bershtein, Kh.I., Ed., Leningrad: Khimiya, 1971.Google Scholar
  6. 6.
    Belyaev, Yu.I., Oreshkin, V.N., and Vnukovskaya, G.L., Zh. Anal. Khim., 1975, vol. 30, no. 3, p. 503.Google Scholar
  7. 7.
    Rcheulishvili, A.N., Zh. Anal. Khim., 1981, vol. 36, no. 10, p. 1889.Google Scholar
  8. 8.
    Alekseenko, A.N., Guletskii, N.N., Korennoi, E.P., and Turkin, Yu.I., Zh. Prikl. Spectrosk., 1984, vol. 41, no. 3, p. 377.Google Scholar
  9. 9.
    Rettberg, T.M. and Holcombe, J.A., Spectrochim. Acta, Part B, 1984, vol. 39, nos. 2–3, p. 249.CrossRefGoogle Scholar
  10. 10.
    Oreshkin, V.N., Belyaev, Yu.I., and Vnukovskaya, G.L., Zavod. Lab., 1990, vol. 56, no. 12, p. 50.Google Scholar
  11. 11.
    Hocqullet, P., Spectrochim. Acta, Part B, 1992, vol. 47, no. 5, p. 719.CrossRefGoogle Scholar
  12. 12.
    Oreshkin, V.N., Vnukovskaya, G.L., and Tsizin, G.I., Geokhimiya, 1998, vol. 36, no. 1, p. 108.Google Scholar
  13. 13.
    Grinshtein, I.L., Vilpan, Y.A., Saraev, A.V., and Vasilieva, L.A., Spectrochim. Acta, Part B, 2001, vol. 56, no. 3, p. 261.CrossRefGoogle Scholar
  14. 14.
    Nagulin, K.Yu., Gil’mutdinov, A.Kh., and Grishin, L.F., J. Anal. Chem., 2003, vol. 58, no. 4, p. 389.CrossRefGoogle Scholar
  15. 15.
    Oreshkin, V.N. and Tsizin, G.I., J. Anal. Chem., 2012, vol. 67, no. 10, p. 830.CrossRefGoogle Scholar
  16. 16.
    Zakharov, Yu.A., Kokorina, O.E., Lysogorskii, Yu.V., and Staroverov, A.E., J. Anal. Chem., 2012, vol. 67, no. 8, p. 714.CrossRefGoogle Scholar
  17. 17.
    Oreshkin, V.N. and Tsizin, G.I., J. Anal. Chem., 2014, vol. 69, no. 3, p. 290.CrossRefGoogle Scholar
  18. 18.
    Oreshkin, V.N. and Tsizin, G.I., Moscow Univ. Chem. Bull. (Engl. Transl.), 2015, vol. 70, no. 4, p. 162.Google Scholar
  19. 19.
    Govindaraju, K., Geostand. Newslett., 1989, vol. 13, special no. 1, p. 1.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Pushchino Research Center for Biological Studies, Institute of Basic Biological Problems, Russian Academy of SciencesPushchinoRussia
  2. 2.Department of Analytical Chemistry, Moscow State UniversityMoscowRussia
  3. 3.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations