Moscow University Chemistry Bulletin

, Volume 74, Issue 3, pp 101–105 | Cite as

A Fuzzy Set of Generating Contacts in a Molecular Agglomerate

  • A. M. BanaruEmail author


It is shown that, from the viewpoint of the theory of fuzzy sets, a set of generating (key) contacts in any molecular agglomerate can be considered as a fuzzy set. Sets of generating contacts are investigated and systematized for monosystemic chain molecular agglomerates. The degrees of fuzziness of fuzzy sets of generating contacts are compared.


fuzzy set molecular agglomerate intermolecular contact 



  1. 1.
    Kitaigorodskii, A.I., Organicheskaya kristallokhimiya (Organic Crystal Chemistry), Moscow: Akad. Nauk SSSR, 1955.Google Scholar
  2. 2.
    Zorkii, P.M., Zh. Fiz. Khim., 1994, vol. 68, p. 966.Google Scholar
  3. 3.
    Peresypkina, E.V. and Blatov, V.A., Acta Crystallogr., Sect. B: Struct. Sci., 2000, vol. 56, p. 1035.CrossRefGoogle Scholar
  4. 4.
    Carugo, O., Blatova, O.A., Medrish, E.O., Blatov, V.A., and Proserpio, D.M., Sci. Rep., 2017, vol. 7, p. 13 209.CrossRefGoogle Scholar
  5. 5.
    Delone, B.N., Dolbilin, N.P., Shtogrin, M.I., and Galiulin, R.V., Dokl. Akad. Nauk SSSR, 1976, vol. 227, p. 19.Google Scholar
  6. 6.
    Senechal, M., Comput. Math. Appl., 1986, vol. 12, nos. 3–4, part 1, p. 565.Google Scholar
  7. 7.
    Dolbilin, N., Struct. Chem., 2016, vol. 27, p. 1725.CrossRefGoogle Scholar
  8. 8.
    Baburin, I.A., Bouniaev, M., Dolbilin, N., Erokhovets, N.Yu., Garber, A., Krivovichev, S.V., and Schulte, E., Acta Crystallogr., Sect. A: Found. Adv., 2018, vol. 74, p. 616.CrossRefGoogle Scholar
  9. 9.
    Grineva, O.V., J. Struct. Chem., 2017, vol. 58, no. 2, p. 373.CrossRefGoogle Scholar
  10. 10.
    Motherwell, W.D.S., CrystEngComm, 2017, vol. 19, p. 6869.CrossRefGoogle Scholar
  11. 11.
    Banaru, A.M., Moscow Univ. Chem. Bull., 2009, vol. 64, no. 2, p. 80.Google Scholar
  12. 12.
    Lord, E.A. and Banaru, A.M., Moscow Univ. Chem. Bull., 2009, vol. 67, no. 2, p. 50.Google Scholar
  13. 13.
    Banaru, A. and Kochnev, A., Stud. Univ. Babes-Bolyai, Chem., 2017, vol. 62, p. 121.CrossRefGoogle Scholar
  14. 14.
    Galiulin, R.V., Kristallograficheskaya geometriya (Crystallographic Geometry), Moscow: KomKniga, 2005.Google Scholar
  15. 15.
    Coxeter, H.S.M. and Moser, W.O.J., Generators and Relations for Discrete Groups, Berlin: Springer, 1972.CrossRefGoogle Scholar
  16. 16.
    Ryzhov, A.P., Elementy teorii nechetkikh mnozhestv i ee prilozhenii (Elements of the Theory of Fuzzy Sets and Its Applications), Moscow: Mosk. Gos. Univ., 1998.Google Scholar
  17. 17.
    De Luca, A. and Termini, S., Inf. Control, 1972, vol. 20, p. 301.CrossRefGoogle Scholar
  18. 18.
    Zorkii, P.M. and Zorkaya, O.N., J. Struct. Chem., 1998, vol. 39, no. 1, p. 103.CrossRefGoogle Scholar
  19. 19.
    Banaru, A.M., Cryst. Rep., 2018, vol. 63, p. 1071.CrossRefGoogle Scholar
  20. 20.
    Zorky, P.M., J. Mol. Struct., 1996, vol. 374, p. 9.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations