The Possibilities of Reducing the Minimal Inhibitory Concentration of Puromycin and Ceftiofur in Their Combination with His6-OPH-Based Biologics
Abstract
Enzymes that hydrolyze the quorum-sensing signal molecules of pathogenic bacteria allow us to influence the number and stability of their populations. The combination of such enzymes with antibiotics can be considered as one of the ways of solving the problem of regulation of the development of antibiotic resistance. In the presence of puromycin and ceftiofur (0.2 g/L) during exposure at 25–41°C, the stabilization of His6-OPH lactonase activity is observed. The molecular docking of antibiotics to the surface of the His6- OPH dimer reveals the antibiotics binding both to the area near the active sites of the enzyme subunits and to the region of contact between the subunits of the dimer, which possibly led to the stabilization of the enzyme. The presence of enzyme preparations facilitates the reduction on 36–48% of the minimum inhibitory concentration (MIC) of puromycin and ceftiofur on the growth of highly concentrated (106 cells/mL) cell populations of Pseudomonas aeruginosa B-6643 and Escherichia coli B-6645.
Keywords
hexahistidine-containing organophosphorus hydrolase antibiotic puromycin ceftiofur minimal inhibitory concentrationsPreview
Unable to display preview. Download preview PDF.
References
- 1.Worthington, R.J. and Melander, C., Trends Biotechnol., 2013, vol. 31, no. 3, p. 177.CrossRefGoogle Scholar
- 2.Dickschat, J.S., Nat. Prod. Rep., 2010, vol. 27, no. 3, p. 343.CrossRefGoogle Scholar
- 3.Dong, Y.H. and Zhang, L.H., J. Microbiol., 2005, vol. 43, no. 1, p. 101.Google Scholar
- 4.Sirotkina, M. and Efremenko, E.N., Appl. Microbiol. Biotechnol., 2014, vol. 98, no. 6, p. 2647.CrossRefGoogle Scholar
- 5.Maslova, O.V., Senko, O.V., Stepanov, N.A., et al., Jundishapur J. Nat. Pharm. Prod., 2017, vol. 12, no. 3.Google Scholar
- 6.Lyagin, I.V. and Efremenko, E.N., Biochimie, 2018, vol. 144, p. 115.CrossRefGoogle Scholar
- 7.Maslova, O., Aslanli, A., Stepanov, N., Lyagin, I., and Efremenko, E., Catalysts, 2017, vol. 7, no. 9, p. 271.CrossRefGoogle Scholar
- 8.Efremenko, E.N., Votchitseva, J.A., Aliev, T.K., et al., RF Patent 2255975, 2005.Google Scholar
- 9.Efremenko, E., Votchitseva, Y., Plieva, F., et al., Appl. Microbiol. Biotechnol., 2006, vol. 70, p. 558.CrossRefGoogle Scholar
- 10.Votchitseva, Y.A., Efremenko, E.N., Aliev, T.K., et al., Biochemistry (Moscow), 2006, vol. 71, p. 167.CrossRefGoogle Scholar
- 11.Lyagin, I.V., Andrianova, M.S., and Efremenko, E.N., Appl. Microbiol. Biotechnol., 2016, vol. 100, no. 13.Google Scholar
- 12.Ismayilov, I.T., Stepanov, N.A., Efremenko, E.N., et al., Moscow Univ. Chem. Bull. (Engl. Transl.), 2015, vol. 70, no. 4, p. 197.CrossRefGoogle Scholar
- 13.Efremenko, E.N. and Tatarinova, N.Y., Microbiology, 2007, vol. 76, no. 3, p. 336.CrossRefGoogle Scholar
- 14.Efremenko, E.N., Azizov, R.E., Makhlis, T.A., et al., Appl. Biochem. Microbiol., 2005, vol. 41, no. 4, p. 377.CrossRefGoogle Scholar
- 15.Trott, O. and Olson, A.J., J. Comput. Chem., 2010, vol. 31, no. 2, p. 455.Google Scholar
- 16.Maslova, O.V., Senko, O.V., and Efremenko, E.N., Russ. Chem. Bull., 2018, vol. 67, no. 4, p. 614.CrossRefGoogle Scholar
- 17.Senko, O., Maslova, O., and Efremenko, E., Int. J. Environ. Res. Public Health, 2017, vol. 14, no. 12, p. 1438.CrossRefGoogle Scholar
- 18.Aslanly, A.G., Maslova, O.V., Sen’ko, O.V., and Efremenko, E.N., Vestn. Inst. Biotekhnol. Fiz.-Khim. Biol. im. Yu.A. Ovchinnikova, 2017, vol. 13, no. 4, p. 13.Google Scholar
- 19.Maslova, O.V., Senko, O.V., and Efremenko, E.N., Biochemistry (Moscow), B, 2018, vol. 12, no. 2, p. 181.Google Scholar