Moscow University Chemistry Bulletin

, Volume 73, Issue 6, pp 285–292 | Cite as

The Influence of the Chemical Composition on the Color of Lead-Silicate Glass Caused by Gold Nanoparticles

  • M. N. Andreev
  • A. A. DrozdovEmail author
  • Yu. A. Belousov
  • V. K. Karandashev
  • V. A. Khvostikov


The influence of the lead content in the K2O–PbO–SiO2 system on the color of glass caused by the plasmon resonance of gold nanoparticles is discussed. It is shown that in glass with a high lead content a longer time of secondary heat treatment (striking) and high temperature affect the hypsochromic shift of the plasmon frequency in UV-vis spectra, while for the remaining compositions, a bathochromic effect is observed. This is explained by the change in the structural role of the lead in the silicate matrix.


lead silicate glass gold nanoparticles plasmonic resonance electronic spectroscopy luminescence spectra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dauval’ter, A.N., Khrustal’nye, tsvetnye i opalovye stekla (Crystal, Colored, and Opal Glasses), Moscow: Gos. Izd. Leg. Prom., 1957.Google Scholar
  2. 2.
    Vogel, W., Glass Chemistry, Berlin: Springer, 1992, 2nd ed., p. 158.Google Scholar
  3. 3.
    Kohara, S., Ohno, H., Takata, M., Usuki, T., and Morita, H., Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 82, 134209.Google Scholar
  4. 4.
    Khvostikov, V.A., Karandashev, V.K., and Burmii, Zh.P., Inorg. Mater., 2015, vol. 51, no. 14, p. 1410.CrossRefGoogle Scholar
  5. 5.
    Karandashev, V.K., Khvostikov, V.A., Nosenko, S.V., and Burmii, Zh.P., Inorg. Mater., 2017, vol. 53, no. 14, p. 1432.CrossRefGoogle Scholar
  6. 6.
    Wagner, F.E., Haslbeck, S., Stievano, L., Calogero, S., Pankhurst, Q.A., and Martinek, K.-P., Nature, 2000, vol. 407, no. 6805, p. 691.CrossRefGoogle Scholar
  7. 7.
    Weyl, W.A., Coloured Glasses, Shapeltown: Soc. Glass Technol., 2016.Google Scholar
  8. 8.
    Etchegoin, P.G., Le Ru, E.C., and Meyer, M., J. Chem. Phys., 2006, vol. 125, 164705.Google Scholar
  9. 9.
    Zheng, J., Petty, J.T., and Dickson, R.M., J. Am. Chem. Soc., 2003, vol. 125, p. 7780.CrossRefGoogle Scholar
  10. 10.
    Sasai, J. and Hirao, K., J. Appl. Phys., 2001, vol. 89, no. 8, p. 4548.CrossRefGoogle Scholar
  11. 11.
    Eliseev, A.A. and Lukashin, A.V., Fizicheskie svoistva veshchestv v nanokristallicheskom sostoyanii. Metodicheskie materialy (Physical Properties of Substances in the Nanocrystalline State: Methodical Guidelines), Moscow: Mosk. Gos. Univ., 2007, p. 5.Google Scholar
  12. 12.
    Mennig, M. and Berg, K.-J., Mater. Sci. Eng., 1991, vol. 9, p. 421.CrossRefGoogle Scholar
  13. 13.
    Pellerin, M., Blondeau, J.-P., Noui, S., Allix, M., Ory, S., Veron, O., De Sousa Meneses, D., and Massiot, D., Gold Bull., 2013, vol. 46, p. 243.CrossRefGoogle Scholar
  14. 14.
    Egorov, A.M., Gukasov, V.M., Ivanin, A.I., Rubtsova, M.Yu., and Yaminskii, I.V., Innovatika Ekspert., 2014, no. 2, p. 60.Google Scholar
  15. 15.
    Stalhandsske, C., Bring, T., and Jonson, B., Glass Technol.: Eur. J. Glass Sci. Technol., Part A, 2006, vol. 47, no. 4, p. 12.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • M. N. Andreev
    • 1
  • A. A. Drozdov
    • 1
    Email author
  • Yu. A. Belousov
    • 1
    • 2
  • V. K. Karandashev
    • 3
  • V. A. Khvostikov
    • 3
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.The Institute of Microelectronics Technology and High-Purity MaterialsRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations