Advertisement

Mechanics of Solids

, Volume 53, Issue 3, pp 329–339 | Cite as

On the Choice of the Mathematical Model of Spherical Shell for Strength Calculation

  • A. V. Belyaev
  • Yu. I. VinogradovEmail author
  • M. V. Konstantinov
Article
  • 3 Downloads

Abstract

Aerospace and other systems usually have spherical tanks, as the most optimal in terms of weight ratio. The functional units of such systems are connected by frames. Consequently, tanks (spherical shells) are loaded locally in them. In this case, the strength of the shell is determined by the stresses in the places of their concentration.

The importance of solving the problems of the strength of a spherical shell attracts the attention of researchers in terms of simplifying mathematical models for engineering calculations with controlled error.

In the article, quantitative criteria for the well-known simplified mathematical models (the theory of shallow shells and asymptotic) are determined for use in solving strength problems with controlled error.

Keywords

spherical shell mathematical model of deformation quantitative analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Z. Vlasov, SelectedWorks, Vol. 1. Sketch of scientific activity “TheGeneral Theory of Shells.” Articles (Izdat. AN SSSR,Moscow, 1962) [in Russian].Google Scholar
  2. 2.
    A. L. Goldenveizer, Theory of Elastic Thin Shells (Nauka, Moscow, 1976) [in Russian].Google Scholar
  3. 3.
    A. P. Filin, Elements of the Theory of Shells (Stroiizdat, Leningrad Division, Leningrad, 1975) [in Russian].Google Scholar
  4. 4.
    V. V. Novozhilov, K. F. Chernykh, and E. I. Mikhailovskii, The Linear Theory of Thin Shells (Politekhnika, Leningrad, 1991) [in Russian].Google Scholar
  5. 5.
    Yu. I. Vinogradov, V. P. Georgievskii, and M. V. Konstantinov, “Goldenweizer Asymptotics in Strength Calculations of Spherical Reservoirs,” Vestnik MGTU im. N.E. Baumana. Mashinostr., No. 3, 119–133 (2015).Google Scholar
  6. 6.
    G. B. Men’kov, Solution of Problems of Deformable Shell Mechanics by Functional Normalization Method, Candidate’s Dissertation in Physics and Mathematics (Kazan, 1999) [in Russian].Google Scholar
  7. 7.
    Y. I. Vinogradov and G. B. Men’kov, A Method for Functional Normalization for Boundary Value Problems in the Theory of Shells (Editorial URSS,Moscow, 2001) [in Russian].Google Scholar
  8. 8.
    Y. M. Grigorenko, L. A. Il’in, and A. D. Kovalenko, Theory of Thin Conical Shells and Their Applications in Machine Engineering (Izdat. AN UkrSSR, Kiev, 1963) [in Russian].Google Scholar
  9. 9.
    Yu. I. Vinogradov and M. V. Konstantinov, “Analysis of a Spherical Tank under a Local Action,” Izv. Akad. Nauk.Mekh. Tverd. Tela, No. 2, 109–120 (2016) [Mech. Solids. (Engl. Transl.) 51 (2), 223–233 (2016)].Google Scholar
  10. 10.
    Yu. I. Vinogradov, “Influence of Frame Rigidity on DeformationMechanics of Cylindrical Shells,” Izv. Vyssh. Uchebn. Zaved.Mashinostr., No. 9, 20–25 (2013).Google Scholar
  11. 11.
    A. A. Amosov, Yu. A. Dubinsky, and N. V. Kopchenova, Computational Methods for Engineers (Vysshaya Shkola,Moscow, 1994) [in Russian].Google Scholar
  12. 12.
    M. V. Konstantinov, “Vlasov Mathematical Model Inaccuracy Quantitative Assessment for a Shallow Spherical Shell,” Nauka Obraz. Nauch. Izd.MGTU im. N. E. Baumana, No. 12, 858–877 (2014).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. V. Belyaev
    • 1
  • Yu. I. Vinogradov
    • 1
    Email author
  • M. V. Konstantinov
    • 1
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations