Advertisement

Mechanics of Solids

, Volume 53, Issue 3, pp 256–261 | Cite as

Relativistic Theory of Elasticity

  • V. V. VasilievEmail author
  • L. V. Fedorov
Article
  • 4 Downloads

Abstract

The article deals with the construction of the theory of elasticity for a medium in a gravitational field described by the equations of the general theory of relativity. As an application, we consider a problem with spherical symmetry.

Keywords

theory of elasticity general theory of relativity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Z. Vlasov, “Equations of Strain Continuity in Curvilinear Coordinates,” in V. Z. Vlasov, Selected Papers. Vol. 1 (Fizmatgiz, Moscow, 1962) [in Russian].Google Scholar
  2. 2.
    A. A. Baranov and V. L. Kolpashchikov, Relativistic Thermomechanics of Continua (URSS,Moscow, 2003) [in Russian].Google Scholar
  3. 3.
    D. Singh, General Relativity (Izd-vo Inostr. Lit-ry,Moscow, 1963) [in Russian].Google Scholar
  4. 4.
    J. L. Sing, “A Theory of Elasticity in General Relativity,” Math. Zeitschr. 73, 82–87 (1959).MathSciNetGoogle Scholar
  5. 5.
    C. B. Reiner, “Elasticity in General Relativity,” Proc. Roy. Soc. London. Ser. A. Math. Phys. Sci. 272 (1348) 44–53 (1963).Google Scholar
  6. 6.
    E. N. Glass and J. Winicourt, “Elastic General Relativistic Systems,” J. Math. Phys. 15 (12) 1934–1940 (1972).Google Scholar
  7. 7.
    L. I. Sedov, “The Energy-Momentum Tensor and Macroscopic Internal Interactions in a Gravitational Field and inMaterialMedia,” Dokl. Akad. Nauk SSSR 164 (3), 519–522 (1965).Google Scholar
  8. 8.
    V. V. Vasil’ev and L. V. Fedorov, “An Elasticity Problem for a Gravitating Ball and Some Geometrical Effects,” Izv. Akad. Nauk.Mekh. Tverd. Tela, No. 1, 84–92 (2003) [Mech. Solids (Engl. Transl.) 38 (1), 67–74 (2003)].Google Scholar
  9. 9.
    V. V. Vasil’ev and L. V. Fedorov, “Solution of a Spherically Symmetric Static Problem of General Relativity for an Elastic Solid Sphere,” Appl. Phys. Res. 9 (6), 8–13 (2017).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Ishlinsky Institute for Problems in Mechanics RASMoscowRussia

Personalised recommendations