Applied Solar Energy

, Volume 55, Issue 1, pp 18–29 | Cite as

Correlation between Photoelectrochemical and Spectrophotometric Study of Dye-Surfactant Combination in Photogalvanic Cell

  • Chandrakanta Mall
  • Shachi Tiwari
  • Prem Prakash SolankiEmail author


The photogalvanic cells are rechargeable device with the sun light in which surfactant solutions are potentially important for efficient energy conversion and storage. Here, effect of cationic cetyltrimethyl ammonium bromide (CTAB), anionic sodium dodecyl sulphate (SDS) and non ionic tween 80 surfactants on the electrical output of the cationic oxazine dye brilliant cresyl blue (BCB)-fructose (redox couple) system in photogalvanic cells have been studied. For this, the photopotential and photocurrent for different cells having BCB-fructose system without and with surfactant (CTAB, SDS and tween 80) in the alkaline medium have been measured. The total 30 different cells have been prepared for optimizing the concentration of electrolytes corresponding to the higher electrical out put. Generally, the electrical output increases in presence of a particular surfactant, due to increase in solubilization and stabilization properties of dye molecules in the water. The amount of enhancement in electrical output of BCB-fructose system was highest with SDS and lowest with tween 80, i.e. the order for BCB-fructose system with different surfactants in photogalvanic cells is: BCB-fructose-SDS > BCB-fructose-CTAB > BCB-fructose-tween 80. This order for electrical output was good agreement with the stability order of BCB-SDS/CTAB/tween 80 system, on the basis of spectrophotometric study. Hence, among these surfactants, SDS has stronger capacity, (due to opposite charge on BCB and SDS) to stabilize the BCB-fructose system leads to enhancement in electrical output of photogalvanic cells. Therefore, dye and surfactant, having chemical structure, like BCB and SDS, has a great importance of improvement of electrical performance to photogalvanic cells in the future.


brilliant cresyl blue, fructose, cetyltrimethyl ammonium bromide sodium dodecyl sulphate tween 80, spectrophotometric study photogalvanic cell 



The authors are thankful to Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, for providing all necessary laboratory facilities. Ms. Chandrakanta Mall is thankful to UGC, New Delhi for National Fellowship for Other Backward Classes Junior Research Fellowship (F/2016-17/NFO-2015-17/OBC-UTT-31589), respectively.


  1. 1.
    Rideal, E.K. and Williams, E.G., The action of light on the ferrous-ferric/iodine iodide equilibrium, J. Chem. Soc. Trans., 1925, vol. 127, pp. 258–269.CrossRefGoogle Scholar
  2. 2.
    Rabinowitch, E., The photogalvanic effect - I: The photochemical properties of the thionine-iron system, J. Chem. Phys., 1940, vol. 8, pp. 551–559.CrossRefGoogle Scholar
  3. 3.
    Rabinowitch, E., The photogalvanic effect. II: The photochemical properties of thionine-iron system, J. Chem. Phys., 1940, vol. 8, pp. 560–566.CrossRefGoogle Scholar
  4. 4.
    Shigehara, K. and Tsuchida, E., Mechanism of photogalvanic effect in thionine-ferrous salt system, J. Phys. Chem., 1977, vol. 81, pp. 1883–1886.CrossRefGoogle Scholar
  5. 5.
    De Groot, M.S., Hendrilks, P.A.J.M., and Brokken-Zijp, J.C.M., Potential/current characteristics of the ferrous-thionine photogalvanic cell, Chem. Phys. Lett., 1983, vol. 97, pp. 521–527.CrossRefGoogle Scholar
  6. 6.
    Groenen, E.J.J., de Groot, M.S., and de Ruiter, R., Carbon electrodes in the ferrous/thionine photogalvanic cell: a quantitative study of electrode selectivity, Electrochim. Acta, 1985, vol. 30, pp. 1199–1204.CrossRefGoogle Scholar
  7. 7.
    Bhowmik, B.B., Chaudhuri, R., and Rohatgi-Mukherjee, K.K., Dye-surfactant interaction and photogalvanic effect, Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 1987, vol. 26, pp. 95–98.Google Scholar
  8. 8.
    Lingamurthy, S., Bhanumathi, V., Sethuram, B., et al., Photogalvanic cells based on the photoreduction of xanthenes dyes using riboflavin as a sensitizer in aqueous/micellar medium, Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 1990, vol. 29, pp. 733–736.Google Scholar
  9. 9.
    Ghosh, G.K., Ghosh, S.K., and Bhattacharya, S.C., Role of nonionic micelles of tween in photovoltage generation using fluorescence dye, J. Oleo. Sci., 2004, vol. 53, pp. 73–77.CrossRefGoogle Scholar
  10. 10.
    Jana, A.K. and Parameswari, S., Studies on the molecular interaction of safranine-T with surfactants, Colloid Polym. Sci., 2005, vol. 283, pp. 1056–1062.CrossRefGoogle Scholar
  11. 11.
    Bi, Z., Li, Y., and Liu, Z., Study of the transparent electrode photogalvanovoltaic cell, Taiyangneng. Xuebao, 1980, vol. 1, pp. 140–147.Google Scholar
  12. 12.
    Bowen, W.R., Electrochemical and photochemical investigations of the iron-thionine system in micellar sodium dodecylsulphate solution, Acta Chem. Scand. A, 1981, vol. 35, pp. 31–315.Google Scholar
  13. 13.
    Srivastva, R.C., Srinivasan, R., Marwadi, P.R., et al., Surfactant micelles for solar energy storage, Curr. Sci., 1982, vol. 51, pp. 1015–1017.Google Scholar
  14. 14.
    Koli, P., Photogalvanic cells: comparative study of various synthetic dye and natural photosensitizer present in spinch extract, RSC Adv., 2014, vol. 4, pp. 46 194–46 202.CrossRefGoogle Scholar
  15. 15.
    Bhimwal, M.K. and Gangotri, K.M., A comparative study on the performance of photogalvanic cells with different photosensitizer for solar energy conversion and storage, D-xylose-NaLS systems, Energy, 2011, vol. 36, pp. 1324–1331.CrossRefGoogle Scholar
  16. 16.
    Gangotri, K.M., Solanki, P.P., and Bhimwal, M.K., Use of anionic micelle in photogalvanic cells for solar energy conversion and storage, sodium lauryl sulphate-mannose-brilliant cresyl blue system, Energy Source, Part A, 2013, vol. 35, pp. 2209–2217.Google Scholar
  17. 17.
    Koli, P., Sodium lauryl sulphate enhanced solar energy conversion by photogalvanic effect of rhodamine B-fructose in artificial light, Energy Tech. Environ. Sci., 2016, vol. 1, pp. 4624–4629.Google Scholar
  18. 18.
    Sharma, U. and Koli, P., Energy conversion in electrolyte under artificial light: fast green FCF-fructose-surfactant-small Pt electrode photogalvanic cell, Appl. Solar Energy, 2016, vol. 52, pp. 76–83.CrossRefGoogle Scholar
  19. 19.
    Koli, P., Solar energy conversion and storage using naphthol green B dye photosensitizer in photogalvanic cell, Appl. Solar Energy, 2014, vol. 50, pp. 67–73.CrossRefGoogle Scholar
  20. 20.
    Koli, P., Study of enhanced photogalvanic effect of naphthol green B in natural sunlight, J. Power Sources, 2015, vol. 285, pp. 310–317.CrossRefGoogle Scholar
  21. 21.
    Koli, P., Surfactant and natural sunlight enhanced photogalvanic effect of Sudan I dye, Arab. J. Chem., 2017, vol. 10, pp. 1077–1083.CrossRefGoogle Scholar
  22. 22.
    Genwa, K.R. and Kumar, A., Studies in nile blue-NaLS system for solar energy conversion, management, photogalvanic performance and conversion efficiency, J. Indian Counc. Chem., 2009, vol. 26, pp. 181–186.Google Scholar
  23. 23.
    Solanki, P.P. and Gangotri, K.M., Studies of the anionic micelles effect on photogalvanic cells for solar energy conversion and storage in sodium lauryl sulphate-safranine-D-xylose system, in Proceedings of the World Renewable Energy Congress, Sweden, 2013.
  24. 24.
    Gangotri, K. and Pramila, S., Use of anionic micelles in photogalvanic cells for solar power energy conversion and storage nals-mannitol-safranine system, Energy Source, Part A, 2006, vol. 28, pp. 149–156.Google Scholar
  25. 25.
    Gangotri, P. and Koli, P., Study of the enhancement on photogalvanics: solar energy conversion and storage in EDTA-safranine O-NaLS system, Sustainable Energy Fuels, 2017, vol. 11, pp. 882–890.CrossRefGoogle Scholar
  26. 26.
    Genwa, K.R. and Chouhan, A., Role of heterocyclic dye (Azur-A) as a photosensitizer in photogalvanic cell for solar energy conversion and storage, NaLS-ascorbic acid system, Solar Energy, 2006, vol. 80, pp. 1213–1219.CrossRefGoogle Scholar
  27. 27.
    Gunsaria, R.K., Gangotri, K.M., and Meena, R.C., Use of surfactant in photogalvanic cell for solar energy conversion and storage NaLS-glycerol-Azur A, Afinidad, 2003, vol. 60, pp. 563–570.Google Scholar
  28. 28.
    Genwa, K.R. and Chouhan, A., Studies of effect of heterocyclic dyes in photogalvanic cells for solar energy conversion and storage, NaLS-ascorbic acid system, J. Chem. Sci., 2004, vol. 116, pp. 339–345.CrossRefGoogle Scholar
  29. 29.
    Ameta, S.C., Khamsera, S., Chittora, A.K., et al., Use of sodium lauryl sulphate in photogalvanic cell for solar energy conversion and storage, methylene blue-EDTA system, Int. J. Energ. Res., 1989, vol. 13, pp. 643–647.CrossRefGoogle Scholar
  30. 30.
    Gangotri, K.M. and Solanki, P.P., Use of sodium lauryl sulphate as a surfactant in a photogalvanic cell for solar energy conversion and storage: a sodium lauryl sulphate-methylene blue-mannose system, Energy Source, Part A, 2013, vol. 35, pp. 1467–1475.Google Scholar
  31. 31.
    Genwa, K.R., Kumar, A., and Sonel, A., Photogalvanic solar energy conversion study with photosensitizer toluidine blue and malachite green in presence of NaLS, Appl. Energy, 2009, vol. 86, pp. 1431–1436.CrossRefGoogle Scholar
  32. 32.
    Gangotri, K.M. and Bhimwal, M.K., Study the performance of photogalvanic cells for solar energy conversion and storage, toluidine blue-D-xylose-NaLS system, Int. J. Energy Res., 2011, vol. 35, pp. 545–552.CrossRefGoogle Scholar
  33. 33.
    Genwa, K.R. and Singh, K., Development of photogalvanic cell and its application in solar energy conversion and storage, Int. J. Chem., 2012, vol. 1, pp. 542–549.Google Scholar
  34. 34.
    Genwa, G.R. and Kumar, A., Dye sensitized photogalvanic solar cells, studies in a methyl green-NaLS system in view of energy conversion, Energy Source, 2012, vol. 34, pp. 1261–1270.CrossRefGoogle Scholar
  35. 35.
    Solanki, P.P. and Gangotri, K.M., The role of surfactants in photogalvanic, solar energy conversion and storage in the sodium lauryl sulphate-thymol blue-mannose system, Arab. J. Sci. Eng., 2012, vol. 37, pp. 91–100.CrossRefGoogle Scholar
  36. 36.
    Genwa, K.R. and Kumar, A., Role of rhodamine B in photogalvanic generation using anionic surfactant in liquid phase photoelectrochemical cell for solar energy conversion and storage, J. Indian Chem. Soc., 2010, vol. 87, pp. 93–939.Google Scholar
  37. 37.
    Gangotri, K.M. and Bhimwal, M.K., Study the performance of photogalvanic cells for solar energy conversion and storage, Solar Energy, 2010, vol. 84, pp. 1294–1300.CrossRefGoogle Scholar
  38. 38.
    Gangotri, K.M., Meena, R.C., and Meena, R., Use of micelles in photogalvanic cell for solar energy conversion and storage, cetyl trimethylammonium bromide-glucose-toluidine blue system, J. Photochem. Photobiol. A: Chem., 1999, vol. 123, pp. 93–97.CrossRefGoogle Scholar
  39. 39.
    Gangotri, K.M., Kalla, P., Genwa, K.R., et al., Use of tween 80 in photogalvanic cell for solar energy conversion and storage, toluidine blue-glucose system, J. Indian Counc. Chem., 1994, vol. 10, pp. 19–22.Google Scholar
  40. 40.
    Mahmoud, S.A., Mohamed, B.S., El-Tabei, A.S., et al., Improvement of the photogalvanic cell for solar energy conversion and storage: rose bengal-oxalic acid-tween 80 system, Energy Proc., 2014, vol. 46, pp. 227–236.CrossRefGoogle Scholar
  41. 41.
    Holmes, W.C., The influence of variation in concentration on the absorption spectra of dye solutions, Ind. Eng. Chem., 1924, vol. 16, pp. 35–40.CrossRefGoogle Scholar
  42. 42.
    Teuber, M., Rogner, M., and Berry, S., Fluorescent probes for non-invasive bioenergetic studies of whole cyanobacterial cells, Biochim. Biophys. Acta, 2001, vol. 1506, pp. 31–46.CrossRefGoogle Scholar
  43. 43.
    Liu, Y. and Hu, N., Loading/release behavior of (chitosan/DNA)n layer-by-layer films towards negatively charged anthraquinone and its application in electrochemical detection of natural DNA damage, Biosens. Bioelectron., 2007, vol. 23, pp. 661–667.CrossRefGoogle Scholar
  44. 44.
    Zhu, Y., Song, S., and Dong, S., Electrode processes of hemoglobin at a platinum electrode covered by brilliant cresyl blue, Bioelectrochem. Bioenerg., 1989, vol. 21, pp. 233–243.CrossRefGoogle Scholar
  45. 45.
    Moztarzadeh, F. and Kazemzadeh, A., Optical oxalate detector based on chemical modification of a polymer film, Sens. Actuators, B, 2005, vol. 106, pp. 832–836.CrossRefGoogle Scholar
  46. 46.
    Ensafi, A.A. and Abassi, S., Sensitive reaction rate method for the determination of low levels of formaldehyde with photometric detection, Fresenius J. Anal. Chem., 1999, vol. 363, pp. 376–379.CrossRefGoogle Scholar
  47. 47.
    Halafihi, T. and Prasad, S., Standardization of kinetic determination of nitrite based on its catalytic effect on an indicator reaction, Asian J. Chem., 2002, vol. 14, pp. 1683–1692.Google Scholar
  48. 48.
    Feng, G., Changqing, Z., Leyu, W., et al., The interaction of brilliant cresyl blue with surfactant and its application in the determination of protein, Chin. J. Anal. Chem., 2002, vol. 3, pp. 324–326.Google Scholar
  49. 49.
    Sadeghie, M.M., Emamei, F., and Ensafi, A.A., Kinetic reaction rate method for the determination of hydrazine with spectrophotometric detection, J. Anal. Chem., 1999, vol. 54, pp. 1024–1027.Google Scholar
  50. 50.
    Zhang, Q.F., Guo, Y.X., Li, R., et al., Complexation study of brilliant cresyl blue with β-cyclodextrin and its derivatives by UV-vis and fluorospectrometry, Spectrochim. Acta, 2008, vol. 69, pp. 65–70.CrossRefGoogle Scholar
  51. 51.
    Mieliauskiene, R., Nistor, M., Laurinavicius, V., et al., Amperometric determination of acetate with a tri-enzyme based sensor, Sens. Actuators, B, 2006, vol. 113, pp. 671–676.CrossRefGoogle Scholar
  52. 52.
    You, H., Spaeth, H., Linhard, V.N.L., et al., Role of surfactants in the interaction of dye molecules in natural DNA polymers, Langmuir, 2009, vol. 25, pp. 11698–11708.CrossRefGoogle Scholar
  53. 53.
    Olorunsola, E.O. and Adedokun, M.O., Surface activity as basis for pharmaceutical applications of hydrocolloids: a review, J. Appl. Pharm. Sci., 2014, vol. 4, pp. 110–116.Google Scholar
  54. 54.
    Chignell, C.F. and Bilski, P., Properties of differently charged micelles containing rose bengal: application in photosensitization studies, J. Photochem. Photobiol. A: Chem., 1994, vol. 77, pp. 49–58.CrossRefGoogle Scholar
  55. 55.
    Kalyansundaram, K., Photophysics of molecules in micelle-forming surfactant solutions, Chem. Soc. Rev., 1978, vol. 7, pp. 453–472.CrossRefGoogle Scholar
  56. 56.
    Moroi, Y., Braun, A.M., and Gratzel, M., Handbook of photochemistry, J. Am. Chem. Soc., 1979, vol. 101, pp. 567–572.CrossRefGoogle Scholar
  57. 57.
    Mall, C. and Solanki, P.P., Spectrophotometric and conductometric studies of molecular interaction of brilliant cresyl blue with cationic, anionic and non-ionic surfactant in aqueous medium for application in photogalvanic cells for solar energy conversion and storage, Energy Rep., 2018, vol. 4, pp. 23–30.CrossRefGoogle Scholar
  58. 58.
    Chakraborty, T. and Ghosh, S., A unified survey of applicability of theories of mixed adsorbed film and mixed micellization, J. Surfact. Deterg., 2008, vol. 11, pp. 323–334.CrossRefGoogle Scholar
  59. 59.
    Ghosh, S., Das Burman, A., De, G.C., et al., Interfacial and self-aggregation of binary mixtures of anionic and nonionic amphiphiles in aqueous medium, J. Phys. Chem. B, 2011, vol. 115, pp. 11098–11112.CrossRefGoogle Scholar
  60. 60.
    Hoffman, M.Z. and Lichtin, N.N., Photochemical determinants of the efficiency of photogalvanic conversion of solar energy, Solar Energy, 1979, pp. 153–187.Google Scholar
  61. 61.
    Hillson, P.J. and Rideal, E., The becquerel effect in the presence of dyestuffs and the action of light on dyes, Proc. R. Soc. London, Ser. A, 1953, vol. 216, pp. 458–476.CrossRefGoogle Scholar
  62. 62.
    Burkinshaw, S.M., Physico-Chemical Aspects of Textile Coloration, Ser.: SDC Soc. of Dyes and Colourists, New York: Wiley, 2016, vol. 1, p. 1–648.Google Scholar
  63. 63.
    Sharma, U., Gangotri, K.M., and Koli, P., Brilliant cresyl blue-fructose for enhancement of solar energy conversion and storage capacity of photogalvanic cells, Fuel, 2011, vol. 90, pp. 3336–3342.CrossRefGoogle Scholar
  64. 64.
    Koli, P. and Sharma, U., Photochemical solar power and storage through photogalvanic cells: comparing performance of dye materials, Energy Sources, Part A, 2017, vol. 39, pp. 555–561.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • Chandrakanta Mall
    • 1
  • Shachi Tiwari
    • 1
  • Prem Prakash Solanki
    • 1
    Email author
  1. 1.Banaras Hindu UniversityUttar PradeshIndia

Personalised recommendations