Skip to main content
Log in

Behavior of various Nigerian quartz samples to repeated irradiation and heating

  • Research Article
  • Published:
Geochronometria

Abstract

In the present work the sensitization of the entire glow-curve is studied in 6 different quartz samples of Nigerian origin. The investigation was applied to the un-fired “as is” samples as well as to samples fired at 900°C for 1 hour following cooling to room temperature. The results showed that in the case of “as is” glow-curve is sensitized as a whole. There is an abrupt transition from the “natural” sensitivity without any previous heating and the artificial sensitivity induced after the first heating. The sensitization is growing up strongly to the 10th heating but to a lower rate. The sensitization factor of the TL glow-peak at “110°C” was found to be linearly correlated to the higher temperature TL peaks. In the case of annealed samples there is an initial increase between the sensitivity immediately after the end of annealing and after the first heating. As the number of heating is increased up to the 10th heating the sensitization is stabilized at a constant value. The results are discussed in the frame-work of existing models and implications of the sensitization effect in various applications, while some explanations are attempted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afouxenidis D, Stefanaki EC, Polymeris GS, Sakalis A, Tsirliganis NC and Kitis G, 2007. TL/OSL properties of natural schist for archaelogical dating and retrospective dosimetry. Nuclear Instruments and Methods in Physics Research A 580(1): 705–709, 10.1016/j.nima.2007.05.142.

    Article  Google Scholar 

  • Bailey RM, 2001. Towards a general kinetic model for optically and thermally stimulated luminescence of quartz. Radiation Measurements 33(1): 17–45, DOI 10.1016/S1350-4487(00)00100-1.

    Article  Google Scholar 

  • Bailiff IK, 1994. The pre-dose technique. Radiation Measurements 23(2–3): 471–479, DOI 10.1016/1350-4487(94)90081-7.

    Article  Google Scholar 

  • Bøtter-Jensen L, Bulur E, Duller GAT and Murray AS, 2000. Advances in luminescence instrument systems. Radiation Measurements 32(5–6): 523–528, DOI 10.1016/S1350-4487(00)00039-1.

    Article  Google Scholar 

  • Bøtter-Jensen L, Larsen NA, Mejdahl V, Poolton NRJ, Morris MF and McKeever SWS, 1995. Luminescence sensitivity changes in quartz as a result of annealing. Radiation Measurements. 24(4): 535–541, DOI 10.1016/1350-4487(95)00006-Z.

    Article  Google Scholar 

  • Charitidis C, Kitis G, Furetta C and Charalambous S, 1999. Superlinerity of quartz: dependence on pre-dose. Radiation Protection Dosimetry. 84(1–4): 95–98.

    Article  Google Scholar 

  • Charitidis C, Kitis G, Furetta C and Charalambous S, 2000. Superlinerity of synthetic quartz: dependence on the firing temperature. Nuclear Instruments and Methods in Physics Research B 168(3): 404–410, DOI 10.1016/S0168-583X(99)01199-4.

    Article  Google Scholar 

  • Chen G and Li SH, 2000. Studies of quartz 110°C thermoluminescence peak sensitivity change and its relevance to optically stimulated luminescence dating. Journal of Physics D: Applied Physics 33(4): 437–443, DOI 10.1088/0022-3727/33/4/318.

    Article  Google Scholar 

  • Correcher V, Garcia-Guinea J, Bustillo MA and Garcia R, 2009. Study of the thermoluminescence emission of a natural a-cristobalite. Radiation Effects and Defects in Solids 164(1): 59–67, 10.1080/10420150802270995.

    Article  Google Scholar 

  • de Lima JF, Navarro MS and Valerio MEG, 2002. Effects of thermal treatment on the TL emission of natural quartz. Radiation Meas-urements. 35(2): 155–159, DOI 10.1016/S1350-4487(01)00283-9.

    Article  Google Scholar 

  • Duller GAT, 1991. Equivalent dose determination using single aliquot. Nuclear Tracks and Radiation Measurements 18(4): 371–378, DOI 10.1016/1359-0189(91)90002-Y.

    Article  Google Scholar 

  • Franklin AD, Prescott JR and Scholefield RB, 1995. The mechanism of thermoluminescence in an Australian sedimentary quartz. Journal of Luminescence 63(5–6): 317–326, DOI 10.1016/0022-2313(94)00068-N.

    Article  Google Scholar 

  • Garcia-Guinea J, Correcher V, Sanchez-Muñoz L, Finch AA, Hole DE and Townsend PD, 2007. On the luminescence emission band at 340 nm of stressed tectosilicate lattices. Nuclear Instruments and Methods in Physics Research A 580(1): 648–651, 10.1016/j.nima.2007.05.111.

    Article  Google Scholar 

  • Guzzo PL, Khoury HJ, Souza CP, Sóuza AM Jr, Schwartz MOE and Azevedo WM, 2006. Defect analysis in natural quartz from Brazilian sites for ionizing radiation dosimetry. Radiation Protection Dosimetry 119(1–4): 168–171, DOI 10.1093/rpd/nci573.

    Article  Google Scholar 

  • Han ZY, Li SH and Tso MYW, 2000. Effect of annealing on Tl sensitivity of granic qartz. Radiation Measurements 32(3): 227–231, DOI 10.1016/S1350-4487(99)00270-X.

    Article  Google Scholar 

  • Itoh N, 2002. Ionic and electronic processses in quartz: mechanisms of thermoluminescence and optically stimulated luminescence. Journal of Applied Physics 92(9): 5036–5044, DOI 10.1063/1.1510951.

    Article  Google Scholar 

  • Jain M, Murray AS and Botter-Jensen L, 2003. Characterization of blue-light stimulated luminescence components in different quartz sample: implication for dose measurement. Radiation Measurements 37(4–5): 441–449, DOI 10.1016/S1350-4487(03)00052-0.

    Article  Google Scholar 

  • Kaylor RM, Feathers J, Hornyak WF and Franklin AD, 1995. Optically stimulated luminescence in Kalahari quartz: bleaching of the 325°C peak as the source of the luminescence. Journal of Luminescence 65(1): 1–6, DOI 10.1016/0022-2313(95)00048-U.

    Article  Google Scholar 

  • Khoury HJ, Guzzo PL, Brito SB and Hazin CA, 2007. Effect of high gamma doses on the sensitization of natural quartz used for thermoluminescence dosimetry. Radiation Effects and Defects in Solids 162(2): 101–107, 10.1080/10420150601035490.

    Article  Google Scholar 

  • Kitis G, Kiyak NG, Polymeris GS and Tsirliganis NC, 2010. The correlation of fast OSL component with the TL peak at 325°C in quartz of various origins. Journal of Luminescence 130(2): 298–303, 10.1016/j.jlumin.2009.09.006.

    Article  Google Scholar 

  • Kiyak NG, Polymeris GS and Kitis G, 2007. Component resolved OSL dose response and sensitization of various sedimentary quartz samples. Radiation Measurements 42(2): 144–155, 10.1016/j.radmeas.2007.02.052.

    Article  Google Scholar 

  • Koul DK, Polymeris GS, Tsirliganis NC, Kitis G, 2010. Possibility of pure thermal sensitization in the pre-dose mechanism of the 110°C TL peak of quartz. Nuclear Instruments and Methods in Physics Research B 268(5): 493–498, 10.1016/j.nimb.2009.11.003.

    Article  Google Scholar 

  • Koul DK, Adamiec G and Chougaonkar MP, 2009. Participation of the R-centres in the sensitization of the OSL signal. Journal of Physics D: Applied Physics 42: 115110, DOI 10.1088/0022-3727/42/11/115110.

    Article  Google Scholar 

  • Koul DK and Chougaonkar MP, 2007. The pre-dose phenomenon in the OSL signal of quartz. Radiation Measurements 42(8): 1265–1272, 10.1016/j.radmeas.2007.04.001.

    Article  Google Scholar 

  • Koul DK, 2008. 110°C TL glow peak of quartz — a brief review. Pramana 71: 1209–1229.

    Article  Google Scholar 

  • Krbetschek MR, Gotze J, Dietrich A and Trautmann T, 1997. Spectral information from minerals relevant for luminescence dating. Radiation Measurements 27(5–6) 695–748, DOI 10.1016/S1350-4487(97)00223-0.

    Article  Google Scholar 

  • Li SJ and Chen G, 2001. Studies of thermal stability of trapped charges associated OSL from quartz. Journal of Physics D: Applied Physics 34: 493–498, DOI 10.1088/0022-3727/34/4/309.

    Article  Google Scholar 

  • Liritzis Y, 1982. Non-linear TL response of quartz grains: some annealing experiments. PACT 6: 209–213.

    Google Scholar 

  • Martini M, Paleari A, Spinolo G and Vedda A, 1995. Role of [AlO4]0 centers in the 380-nm thermoluminescence of quartz. Physical Review B 51: 138–142.

    Article  Google Scholar 

  • Murray AS and Roberts RG, 1998. Measurement of the equivalent dose in quartz using a regenerative-dose single aliquot protocol. Radiation Measurements 29(5): 503–515, DOI 10.1016/S1350-4487(98)00044-4.

    Article  Google Scholar 

  • Ogundare FO, Chithambo ML and Oniya EO, 2006. Anomalous behaviour of thermoluminescence from quartz: A case of glow peaks from a Nigerian quartz. Radiation Measurements 41(5): 549–553 DOI 10.1016/j.radmeas.2006.03.001.

    Article  Google Scholar 

  • Pagonis V, Tatsis E, Kitis G and Drupieki GC, 2002. Radiation Protection and Dosimetry 100(1–4): 373–376.

    Article  Google Scholar 

  • Polymeris G, Kitis G and Pagonis V, 2006. The effects of annealing and irradiation on the sensitivity and superlinearity properties of the 110°C thermoluminescence peak of quartz. Radiation Measurements 41(5): 554–564, 10.1016/j.radmeas.2006.03.006.

    Article  Google Scholar 

  • Preusser F, Chithambo ML, Götte T, Martini M, Ramseyer K, Sendezera EJ. Susino GJ and Wintle AG, 2009. Quartz as a natural luminescence dosimeter. Earth-Science Reviews 97(1–4): 184–214, 10.1016/j.earscirev.2009.09.006.

    Article  Google Scholar 

  • Sawakuchi, AO, DeWitt R and Faleiros FM, 2010. Correlation between thermoluminescence sensitivity and crystallization temperatures of quartz: Potential application in geothermometry. Radiation Measurements 46(1): 51–58, 10.1016/j.radmeas.2010.08.005.

    Article  Google Scholar 

  • Spooner NA, 1994. On the optical dating signal from quartz. Radiation Measurements 23(2–3): 593–600, DOI 10.1016/1350-4487(94)90105-8.

    Article  Google Scholar 

  • Stokes S, 1994. The timing of OSL sensitivity changes in a natural quartz. Radiation Measurements 23(2–3): 601–605, DOI 10.1016/1350-4487(94)90106-6.

    Article  Google Scholar 

  • Stoneham D and Stokes S, 1991. An investigation of the relationship between the 110°C TL peak and optically stimulated luminescence in sedimentary quartz. Nuclear Tracks and Radiation Measurements 18(1–2): 119–123, DOI 10.1016/1359-0189(91)90102-N.

    Google Scholar 

  • Subedi B, Oniya E, Polymeris GS., Afouxenidis D, Tsirliganis NC and Kitis G, 2011. Thermal quenching of thermoluminescence in quartz samples of various origin. Nuclear Instruments and Methods in Physics Research B 269(6): 572–581, 10.1016/j.nimb.2011.01.011.

    Article  Google Scholar 

  • Thomsen KJ, 2004. Optically stimulated luminescence techniques in retrospective dosimetry using single grains of quartz extracted from unheated materials. A thesis submitted in partial fulfilment of the requirements for the Ph.D. degree at the University of Copenhagen, Denmark. ISSN 0106-2840.

  • Wintle AG and Murray AS, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41(4): 369–391, 10.1016/j.radmeas.2005.11.001.

    Article  Google Scholar 

  • Wintle AG, 1997. Luminescence dating: laboratory procedures and protocols. Radiation Measurements 27(5-6): 769–817, DOI 10.1016/S1350-4487(97)00220-5.

    Article  Google Scholar 

  • Wintle AG and Murray AS, 1999. Luminescence sensitivity changes in quartz. Radiation Measurements 30(1): 107–118, DOI 10.1016/S1350-4487(98)00096-1.

    Article  Google Scholar 

  • Wintle AG and Murray AS, 2000. Quartz OSL; Effects of thermal treatment and their relevance to laboratory dating procedures. Radiation Measurements 32(5–6): 387–400, DOI 10.1016/S1350-4487(00)00057-3.

    Article  Google Scholar 

  • Yang XH and McKeever SWS, 1990. The predose effect in crystalline quartz. Journal of Physics D: Applied Physics 23(2): 237–244, DOI 10.1088/0022-3727/23/2/017.

    Article  Google Scholar 

  • Zimmerman J, 1971. The radiation-induced increase of the 110°C thermoluminescence sensitivity of fired quartz. Journal of Physics C: Solid State Physics 4(18): 3265–3276, DOI 10.1088/0022-3719/4/18/032.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebenezer O. Oniya.

About this article

Cite this article

Oniya, E.O., Polymeris, G.S., Tsirliganis, N.C. et al. Behavior of various Nigerian quartz samples to repeated irradiation and heating. Geochron 39, 212–220 (2012). https://doi.org/10.2478/s13386-012-0008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13386-012-0008-2

Keywords

Navigation