, Volume 3, Issue 3, pp 156–171 | Cite as

A synchrony-based perspective for partner selection and attentional mechanism in human-robot interaction

  • Syed Khursheed HasnainEmail author
  • Ghiles Mostafaoui
  • Philippe Gaussier
Research Article


Future robots must co-exist and directly interact with human beings. Designing these agents imply solving hard problems linked to human-robot interaction tasks. For instance, how a robot can choose an interacting partner among various agents and how a robot locates regions of interest in its visual field. Studies of neurobiology and psychology collectively named synchrony as an indispensable parameter for social interaction. We assumed that Human-Robot interaction could be initiated by synchrony detection. In this paper, we present a developmental approach for analyzing unintentional synchronization in human-robot interaction. Using our neural network model, the robot learns from a babbling step its inner dynamics by associating its own motor activities (oscillators) with the visual stimulus induced by its own motion. After learning the robot is capable of choosing an interacting agent and of localizing the spatial position of its preferred partner by synchrony detection.


Human Robot Interaction Synchrony Focus of Attention Partner Selection Dynamical Systems neural networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Otero, S. Knoop, C. L. Nehaniv, D. Syrdal, K. Dautenhahn and R. Dillmann. Distribution and recognition of gestures in humanrobot interaction. IEEE symposium on robots and human interactive communication (RO-MAN06), Hatfield, UK September 6–8, 2006.Google Scholar
  2. [2]
    B. Gates. A robot in every home. Scientific American 296(1):5865, 2007.CrossRefGoogle Scholar
  3. [3]
    K. Dautenhahn, The art of designing socially intelligent agents: Science, fiction, and the human in the loop, Applied Artificial Intelligence, vol. 12, pp. 573617, 1998.Google Scholar
  4. [4]
    M. M. Haque, D. Das, T. Onuki, Y. Kobayashi and Y. Kuno. Model for controlling a target human’s attention in multi-party settings. IEEE RO-MAN-2012, IEEE Symposium on robots an human interactive communication, Paris 2012.Google Scholar
  5. [5]
    A. Pikovsky, M. Rosenblum and J. Kurth. Synchronization: a universal concept in nonlinear sciences, Cambridge, 2001.zbMATHCrossRefGoogle Scholar
  6. [6]
    J. Pantaleone. Synchronization of metronomes. American Journal of Physics, Vol. 70, Nr. 10AAPT, p. 992–1000, 2002CrossRefGoogle Scholar
  7. [7]
    M. Rosenblum, A. Pikovsky and J. Kurth. Synchronization approach to analysis of biological system. Fluctuation and noise letters, vol. 4, No. 1, L53–L62, World scientific publishing company, 2004.CrossRefGoogle Scholar
  8. [8]
    S. Strogatz and I. Stewart. Coupled Oscillators and Biological Synchronization. Scientific American, 269:102–109, Dec. 1993.CrossRefGoogle Scholar
  9. [9]
    I. I. Blekhman. Synchronization in Sicence and Technology. ASME, New York, 1988.Google Scholar
  10. [10]
    R. E. Mirollo and S. H. Strogatz. Synchronization of pulse-coupled biological oscillators. SIAM Journal on Applied Mathematics 50, 1645–1662, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    T. J. Walker. Acoustic synchrony: two mechanisms in the snowy tree cricket. Science 166, pages 891–894, 1969.CrossRefGoogle Scholar
  12. [12]
    M. Rosenblum, A. Pikovsky. Synchronization: from pendulum clocks to chaotic lasers and chemical oscillators. Contemporary Physics, volume 44,number 5, pages 401–416, September October 2003.CrossRefGoogle Scholar
  13. [13]
    A. J. W. Ward, S. Axford, and J. Krause. Mixed-species shoaling in fish: the sensory mechanisms and costs of shoal choice. Behavioral Ecology & Sociobiology, 52, 182187, 2002.CrossRefGoogle Scholar
  14. [14]
    L. J. Cator, B. J. Arthur, L. C. Harrington and R. R. Hoy. Harmonic convergence in the love songs of the dengue vector mosquito. Science, 323, 10771079, 2009.CrossRefGoogle Scholar
  15. [15]
    D. C. Michaels, E. P. Matyas and J. Jalife. Mechanisms of sinoatrial pacemaker synchronization: a new hypothesis. Circulation Res., 61, pp. 704–714, 1987.CrossRefGoogle Scholar
  16. [16]
    E. Delaherche, M. Chetouani, A. Mahdhaoui C. Saint-Georges, S. Viaux and D. Cohen. Interpersonal Synchrony: A Survey Of Evaluation Methods Across Disciplines. IEEE Transactions on Affective Computing. Vol 3 No 3 Pages 349–365, 2012.CrossRefGoogle Scholar
  17. [17]
    L. Glass. Synchronization and rhythmic processes in physiology. Nature 410: 277284, 2001.CrossRefGoogle Scholar
  18. [18]
    R. Hari and M. V. Kujala. Brain basis of human social interaction: From concepts to brain imaging. Physiological Reviews 89: 453479, 2009.CrossRefGoogle Scholar
  19. [19]
    V. Muller and U. Lindenberger. Cardiac and Respiratory Patterns Synchronize between Persons during Choir Singing. PloS ONE, Volume 6,Issue 9 e24893, September 2011.CrossRefGoogle Scholar
  20. [20]
    F. Cummins. Periodic and aperiodic synchronization in skilled action. Frontiers in Human Neuroscience: 5:170; doi: 10.3389/fnhum.2011.00170, 2011.CrossRefGoogle Scholar
  21. [21]
    R. Feldman. ParentInfant Synchrony: Biological Foundations and Developmental Outcomes. Current Directions in Psychological Science, Volume 16,issue 6, p. 340–345. ISSN: 0963-7214 DOI: 10.1111/j.1467-8721.2007.00532.x Blackwell Publishing Inc, December 2007.Google Scholar
  22. [22]
    A. Kendon. Conducting Interaction: Patterns of behaviors in focus encounters. Cambridge University press, Cambridge, UK. 1990.Google Scholar
  23. [23]
    R. C. Schmidt and M. J. Richardson. Coordination Neural behavioral and social dynamics, Volume: socialdyna, Issue: 4, Publisher: Springer, Pages: 1–53, 2008.Google Scholar
  24. [24]
    J. Nadel, I. Carchon, C. Kervella, D. Marcelli, D. Reserbat. Expectancies for social contingency in 2 months old. Developmental science 2, 164–173, 1999.CrossRefGoogle Scholar
  25. [25]
    W. S. Condon and L. W. Sander. Neonate movement is synchronized with adult speech: Interactional participation and language acquisition. Science, 183, 99101, 1974.CrossRefGoogle Scholar
  26. [26]
    C. G. Prince, G. J Hollich, N. A. Helder, E. J. Mislivec, A. Reddy, S. Salunke, and N. Memon. Taking synchrony seriously: a perceptual-level model of infant synchrony detection. Proceedings of the Fourth International Workshop on Epigenetic Robotics. Lund University Cognitive Studies, (2004)..Google Scholar
  27. [27]
    L. J. Gogate and L. E. Bahrick. Intersensory redundancy facilitates learning of arbitrary relations between vowel sounds and objects in seven-month-old infants. Journal of Experimental Child Psychology, 69, 133–149, 1998.CrossRefGoogle Scholar
  28. [28]
    J. S. Watson. Smiling, cooing, and The Game. Merrill-Palmer Quarterly, 18, 323–339, 1972.Google Scholar
  29. [29]
    G. Gergely and J. S. Watson. Early socio-emotional development: Contingency perception and the social-biofeedback model. In: P. Rochat (Ed.), Early Social Cognition: Understanding Others in the First Months of Life (pp. 101–136). Mahwah, NJ: Lawrence Erlbaum, 1999.Google Scholar
  30. [30]
    P. Rochat and T. Striano. Perceived self in infancy. Infant Behavior & Development, 23, 513–530, 2000.CrossRefGoogle Scholar
  31. [31]
    J. A. S. Kelso, G. Dumas and E. Tognoli. Outline of a general theory of behavior and brain coordination., 2012.Google Scholar
  32. [32]
    U. Hasson, Y. Nir, I. Levy, G. Fuhrman, R Malach. Intersubject synchronization of cortical activity during natural vision. Science; 303(5664):1634–40, 2004.CrossRefGoogle Scholar
  33. [33]
    G. J. Stephens, L.J. Silbert, U Hasson. Speaker-listener neural coupling underlies successful communication. Proc Natl Acad Sci USA; 107(32):14425:30, 2010CrossRefGoogle Scholar
  34. [34]
    G. Dumas, J. Nadel, R. Soussignan, J. Martinerie, L. Garnero. Inter-Brain Synchronization during Social Interaction. PLos ONE 2010;5(8):e12166, 2010.CrossRefGoogle Scholar
  35. [35]
    J. Issartel, L. Marin, M. Cadopi. Unintended Interpersonal Coordination: Can we march to the beat of our own drum?. Neuroscience Letters, 411:174–179, 2007.CrossRefGoogle Scholar
  36. [36]
    Z. Nda, E. Ravasz, T. Vicsek, Y. Brechet, and A.-L. Barabsi, The sound of many hands clapping, Nature, 403, 850, 2000.Google Scholar
  37. [37]
    M. Varlet, L. Marin, S. Raffard, RC. Schmidt, D. Capdevielle et al. Impairments of Social Motor Coordination in Schizophrenia. PLoS ONE 7(1): e29772. doi:10.1371/journal.pone.0029772, 2012.CrossRefGoogle Scholar
  38. [38]
    P. Andry, A. Blandchard, P. Gaussier. Using the rhythm of nonverbal human-robot interaction as a signal for learning. IEEE Transactions on Autonomous Mental Development 3(1): 30–42, 2011.CrossRefGoogle Scholar
  39. [39]
    K. Prepin and P. Gaussier. How an agent can detect and use Synchrony parameter of its own interaction with a human. COST 2102 Training School, 50–65, 2009.Google Scholar
  40. [40]
    A. Blanchard and L. Caamero. Using visual velocity detection to achieve synchronization. Procs 3rd Int Symposium on Imitation in Animals and Artifacts (SSAISB), 2005.Google Scholar
  41. [41]
    Q. Shen, H. Kose-Bagci, J. Saunders, K. Dautenhahn. The Impact of Participants’ Beliefs on Motor Interference and Motor Coordination in HumanHumanoid Interactions. Autonomous Mental Development, IEEE Transactions, 04/2011Google Scholar
  42. [42]
    L. Marin, J. Issartel and T. Chaminade. Interpersonal motor coordination, from humanhuman to humanrobot interactions.In: Dautenhahn, Kerstin (ed.), Robots in the Wild: Exploring human-robot interaction in naturalistic environments: Special Issue of Interaction Studies 10:3, 2009.Google Scholar
  43. [43]
    M. P. Michalowski, S. Sabanovic and H. Kozima. A dancing robot for rhythmic social interaction. Proceedings of the ACM/IEEE international conference on Human-robot interaction ACM New York, NY, USA 2007.Google Scholar
  44. [44]
    T. Ikegami and H. Iizuka. Joint attention and Dynamics repertoire in Coupled Dynamical Recognizers,the proceedings of the AISB 03: the Second International Symposium on Imitation in Animals and Artifacts, pp.125–130, UK, April 2003.Google Scholar
  45. [45]
    C. Crick, M. Munz, B. Scassellati. Robotic drumming: Synchronization in social tasks. Proceedings of IEEE International Symposium on Robot and Human Interactive Communication, 2006.Google Scholar
  46. [46]
    M. Rolf, M. Hanheide and K. J. Rohlfing. Attention via synchrony. Making use of multimodal cues in social learning. IEEE Transactions on Autonomous Mental Development 1: 55–67. 2009CrossRefGoogle Scholar
  47. [47]
    V. V. Hafner and F. Kaplan. Interpersonal Maps: How to map affordances for interaction behaviors. Proceedings of international conference on Towards affordance-based robot control, 2006.Google Scholar
  48. [48]
    J. P Lachaux, E. Rodriguez, J. Martinerie and F.J. Varela. Measuring phase synchrony in brain signals. Human Brain Mapping, 1999.Google Scholar
  49. [49]
    K. P. B. Horn and B. G. Schunck. Determining optical flow. ARTIFICAL INTELLIGENCE, vol:17, 185–203, 1981.CrossRefGoogle Scholar
  50. [50]
    A. Revel, P. Andry. Emergence of Sturctured Interactions: From theoretical model to pragmatic robotics. Neural Networks, vol. 22, no. 2, pp. 116–125, 2009.CrossRefGoogle Scholar
  51. [51]
    J. Nagumo. A learning method for system identification. IEEE Trans. Autom. Control 12(3), 282–287 NLMS reference, 1967.CrossRefGoogle Scholar
  52. [52]
    B. Widrow, M. E. Hoff. Adaptive switiching circuits. In IRE WESCON, pages 96–104, New York, Convention Record, 1960.Google Scholar
  53. [53]
    P. Rochat. Ego functions of early imitiation. In A. Meltzoff & W. Prinz (Eds.), The imitative mind (pp. 85–97). Cambridge University Press, 2002.CrossRefGoogle Scholar
  54. [54]
    K. Gold and B. Scassellati. Using Probabilistic Reasoning over Time to Self-Recognize. Robotics and Autonomous Systems. Vol. 57(5), p. 384–392. 2009.CrossRefGoogle Scholar
  55. [55]
    J. A. Movshon, E.H. Adelson, M.S. Gizzi, and W.T. Newsome. The analysis of moving visual patterns. Pattern recognition mechanisms, 54:117151, 1985.Google Scholar
  56. [56]
    S. Lepretre, P. Gaussier and JP. Cocquerez. From navigation to active object recognition. Citeseer. 2000Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Syed Khursheed Hasnain
    • 1
    Email author
  • Ghiles Mostafaoui
    • 1
  • Philippe Gaussier
    • 1
  1. 1.Neurocybernetic team, ETIS, ENSEAUniversity of Cergy-PontoiseCergy-PontoiseFrance

Personalised recommendations