Robot-assisted therapy for autism spectrum disorders with (partially) autonomous control: Challenges and outlook

Abstract

Robot-assisted therapy (RAT) is an emerging field that has already seen some success and is likely to develop in the future. One particular application area is within therapies for autism spectrum disorders, in which the viability of the approach has been demonstrated.

The present paper is a vision paper with the aim of identifying research directions in the near future of RAT. Specifically, we argue that the next step in such therapeutic scenarios is the development of more substantial levels of autonomy which would allow the robot to adapt to the individual needs of children over longer periods of time (while remaining under the ultimate supervision of a therapist). We argue that this requires new advances on the level of robot controllers as well as the ability to infer and classify intentions, goals and emotional states of the robot’s interactants. We show that the state of the art in a number of relevant disciplines is now at the point at which such an endeavour can be approached in earnest.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Task Force on DSM-IV. Diagnostic and statistical manual of mental disorders: DSM-IV-TR., American Psychiatric Association (2000).

  2. [2]

    R. L. Simpson, T. Hagiwara, and K. T. Cook, Behavioral approach to assessment of youth with emotional/behavioral disorders: A handbook for school-based practitioners (Pro-Ed, Austin, TX, 2003), chap. Autism spectrum disorders: Assessment options and strategies., pp. 419–461, 2nd ed.

    Google Scholar 

  3. [3]

    D. Berkell Zager, Autism: Identification, education and treatment. (Erlbaun, Mahwah, NJ, 1999).

    Google Scholar 

  4. [4]

    B. Prizant and E. Rubin, The Journal of the Association for Persons with Severe Disabilities 24, 199 (1999).

    Article  Google Scholar 

  5. [5]

    S. H. Lee, R. L. Simpson, and K. A. Shogren, Focus on Autism and Other Developmental Disabilities 22, 2 (2007).

    Article  Google Scholar 

  6. [6]

    S. Baron-Cohen, A. M. Leslie, and U. Frith, Cognition 21, 37 (1985).

    Article  Google Scholar 

  7. [7]

    S. Eldevik, R. Hastings, J. Hughes, E. Jahr, S. Eikeseth, and S. Cross, Journal of Clinical Child & Adolescent Psychology 38, 439 (2009).

    Article  Google Scholar 

  8. [8]

    National Research Council, Educating Children with Autism. (The National Academies Press, Washington, DC, 2001), chap. Front Matter.

    Google Scholar 

  9. [9]

    K. McGoey, T. Eckert, and G. Dupaul, Journal of Emotional and Behavioural Disorders 10, 14 (2002).

    Article  Google Scholar 

  10. [10]

    A. N. Peters-Scheffer, R. Didden, H. Korzilius, and P. Sturmey, Research in Autism Spectrum Disorders 5, 60 (2011).

    Article  Google Scholar 

  11. [11]

    I. Magiati, T. Charman, and P. Howlin, Journal of Child Psychology and Psychiatry 48, 803 (2007).

    Article  Google Scholar 

  12. [12]

    P. Sturmey and A. Fitzer, Autism spectrum disorders: Applied behavior analysis, evidence and practice (Pro-Ed, Austin, TX, 2007).

    Google Scholar 

  13. [13]

    P. Duker, R. Didden, and J. Sigafoos, One to one training: Instructional procedures for learners with developmental disabilities (Pro-Ed, Austin, TX, 2004).

    Google Scholar 

  14. [14]

    O. I. Lovaas, Teaching individuals with developmental delays: Basic intervention techniques. (Pro-Ed, Austin, TX, 2003).

    Google Scholar 

  15. [15]

    J. L. Matson and K. R. Smith, Research in Autism Spectrum Disorders 2, 60 (2008).

    Article  Google Scholar 

  16. [16]

    S. Eikeseth, Research in Developmental Disabilities 30, 158 (2009).

    Article  Google Scholar 

  17. [17]

    P. Howlin, I. Magiati, and T. Charman, American Journal on Intellectual and Developmental Disabilities 114, 23 (2009).

    Article  Google Scholar 

  18. [18]

    S. J. Rogers and L. A. Vismara, Journal of Clinical Child & Adolescent Psychology 37, 8 (2008).

    Article  Google Scholar 

  19. [19]

    D. Scattone, Psychology in the Schools 44, 717 (2007).

    Article  Google Scholar 

  20. [20]

    C. Nikopoulos and M. Keenan, Behavioural interventions 18, 87 (2003).

    Article  Google Scholar 

  21. [21]

    M. Weiss and S. Harris, Behaviour Modification 25, 785 (2001).

    Article  Google Scholar 

  22. [22]

    F. Happe, Handbook of autism and pervasive developmental disorders 1, 640 (2005).

    Google Scholar 

  23. [23]

    A. Klin, D. Lin, P. Gorrindo, G. Ramsay, and W. Jones, Nature 459, 257 (2009).

    Article  Google Scholar 

  24. [24]

    B. Scassellati, Robotics research 552–563 (2007).

    Google Scholar 

  25. [25]

    A. M. Leslie, Mapping the Mind Domain Specificity in Cognition and Culture (Cambridge University Press, Cambridge, 1994), chap. ToMM, ToBy and Agency: Core architecture and domain specificity, pp. 119–148.

    Google Scholar 

  26. [26]

    C. A. Prothmann, C. Ettrich, and S. Prothmann, Anthrozoos 22, 161 (2010).

    Article  Google Scholar 

  27. [27]

    M. J. Sams, E. V. Fortney, and S. Willenbring, The American journal of occupational therapy 60, 268 (2006).

    Article  Google Scholar 

  28. [28]

    F. Martin and J. Farnum, Western Journal of Nursing Research 24, 657 (2002).

    Article  Google Scholar 

  29. [29]

    A. Grigore and A. S. Rusu, D. Society and Animals p. in press (2012).

    Google Scholar 

  30. [30]

    I. Werry and K. Dautenhahn, inProcs SIRS99, 7th Symposium on Intelligent Robotic Systems (1999).

    Google Scholar 

  31. [31]

    J. J. Diehl, L. M. Schmitt, M. Villan, and C. R. Crowell, Research in Autism Spectrum Disorders 6, 249 (2012).

    Article  Google Scholar 

  32. [32]

    E. S. Kim, R. Paul, F. Shic, and B. Scassellati, 1 (2012), URL http://humanrobotinteraction.org/journal/index.php/HRI/article/view/25.

  33. [33]

    L. Quirmbach, A. Lincoln, M. Feinberg-Gizzo, B. Ingersoll, and S. Andrews, Journal of autism and developmental disorders 39, 299 (2009).

    Article  Google Scholar 

  34. [34]

    S. Ozonoff, Neuropsychology 9, 491 (1995).

    Article  Google Scholar 

  35. [35]

    F. Michaud, P. Lepage, and J. Leroux, in International Symposium on Robotics (2000).

    Google Scholar 

  36. [36]

    B. Robins, K. Dautenhahn, R. Boekhorst, and A. Billard, Universal Access in the Information Society 4, 105 (2005).

    Article  Google Scholar 

  37. [37]

    H. Kozima, C. Nakagawa, and Y. Yasuda, in EEE International Workshop on Robot and Human Interactive Communication. (IEEE, 2005), pp. 341–346.

    Google Scholar 

  38. [38]

    K. Dautenhahn, I. Werry, J. Rae, P. Dickerson, P. Stribling, and B. Ogden, Socially Intelligent Agents — Creating Relation-ships with Computers and Robots (Kluwer Academic Publishers, 2002), chap. Robotic Playmates: Analysing Interactive Competencies of Children with Autism Playing with a Mobile Robot.

    Google Scholar 

  39. [39]

    G. Pradel, P. Dansart, A. Puret, and C. Barthelemy, in IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society (2010), pp. 1540–1545.

    Google Scholar 

  40. [40]

    D. François, S. Powell, and K. Dautenhahn, Interaction Studies 10, 324 (2009).

    Article  Google Scholar 

  41. [41]

    B. Robins, K. Dautenhahn, and P. Dickerson, in Second International Conferences on Advances in Computer-Human Interactions, 2009 (IEEE, 2009), pp. 205–211.

    Google Scholar 

  42. [42]

    B. Robins, P. Dickerson, P. Stribling, and K. Dautenhahn, Interaction studies 5, 161 (2004).

    Article  Google Scholar 

  43. [43]

    B. Vanderborght, R. Simut, J. Saldien, C. A. Pop, A. S. Rusu, S. Pintea, D. Lefeber, and D. O. David, Interaction Studies 13, (2012), pp. 348–372.

    Article  Google Scholar 

  44. [44]

    C. A. Pop, R. E. Simut, S. Pintea, J. Saldien, A. S. Rusu, J. Vanderfaeillie, D. O. David, D. Lefeber, and B. Vanderborght, in International Conference on Innovative Technologies for Autism Spectrum Disorders. ASD: Tools, Trends and Testimonials (2012).

    Google Scholar 

  45. [45]

    R. E. Simut, C. A. Pop, J. Vanderfaeillie, D. Lefeber, and B. Vanderborght, in International Conference on Innovative Technologies for Autism Spectrum Disorders. ASD: Tools, Trends and Testimonials. (2012).

    Google Scholar 

  46. [46]

    A. Tapus, A. Peca, A. Aly, C. A. Pop, L. Jisa, S. Pintea, A. S. Rusu, and D. O. David, Interaction studies 13, 315 (2012).

    Article  Google Scholar 

  47. [47]

    B. Scassellati, H. Admoni, and M. Matari¢, Annual Review of Biomedical Engineering 14, 275 (2012).

    Article  Google Scholar 

  48. [48]

    G. Bird, J. Leighton, C. Press, and C. Heyes, Proceedings of the Royal Society B: Biological Sciences 274, 3027 (2007).

    Article  Google Scholar 

  49. [49]

    K. Dautenhahn and I. Werry, Pragmatics & Cognition 12, 1 (2004).

    Article  Google Scholar 

  50. [50]

    D. Feil-Seifer and M. Matari¢, IEEE Robotics & Automation Magazine 18, 24 (2011).

    Article  Google Scholar 

  51. [51]

    A. C. Pierno, M. Maria, D. Lusher, and U. Castiello, Neuropsychologia 46, 448 (2008).

    Article  Google Scholar 

  52. [52]

    G. Pioggia, R. Igliozzi, M. Ferro, A. Ahluwalia, F. Muratori, and D. De Rossi, Neural Systems and Rehabilitation Engineering, IEEE Transactions on 13, 507 (2005).

    Google Scholar 

  53. [53]

    G. Pioggia, R. Igliozzi, M. L. Sica, M. Ferro, F. Muratori, A. Ahluwalia, and D. De Rossi, JCR 1, 49 (2008).

    Google Scholar 

  54. [54]

    B. Robins, K. Dautenhahn, and J. Dubowski, Interaction Studies 7, 509 (2006).

    Article  Google Scholar 

  55. [55]

    S. Costa, C. Santos, F. Soares, M. Ferreira, and F. Moreira, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2010), pp. 3856–3859.

    Google Scholar 

  56. [56]

    P. Ravindra, S. De Silva, K. Tadano, A. Saito, S. G. Lambacher, and M. Higashi, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2009), pp. 3561–3567.

    Google Scholar 

  57. [57]

    D. Feil-Seifer and M. Matari¢, in 11th International Symposium on Experimental Robotics 2008 (Springer, 2008), pp. 201–210.

    Google Scholar 

  58. [58]

    H. Kozima, C. Nakagawa, and Y. Yasuda, Progress in Brain Research 164, 385 (2007).

    Article  Google Scholar 

  59. [59]

    H. H. Lund, M. Dam Pedersen, and R. Beck, Artificial Life and Robotics 13, 394 (2009).

    Article  Google Scholar 

  60. [60]

    C. M. Stanton, P. H. Kahn, R. L. Severson, J. H. Ruckert, and B. T. Gill, in 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI) (IEEE, 2008), pp. 271–278.

    Google Scholar 

  61. [61]

    P. Stribling, J. Rae, and P. Dickerson, Clinical linguistics & phonetics 23, 555 (2009).

    Article  Google Scholar 

  62. [62]

    J. Wainer, K. Dautenhahn, B. Robbins, and F. Amirabdollahian, in 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (IEEE, 2010), pp. 631–638.

    Google Scholar 

  63. [63]

    A. Duquette, F. Michaud, and H. Mercier, Autonomous Robots 24, 147 (2008).

    Article  Google Scholar 

  64. [64]

    C. Liu, K. Conn, S. N, and W. Stone, IEEE Transactions on Robotics 24, 883 (2008).

    Article  Google Scholar 

  65. [65]

    T. Landauer, ACM SIGCHI Bulletin 17, 333 (1986).

    Article  Google Scholar 

  66. [66]

    D. Rosenberg and J. Wilson, Handbook of HumanComputer Interaction 39, 859 (1988).

    Google Scholar 

  67. [67]

    T. Belpaeme, P. Baxter, R. Read, R. Wood, H. Cuayáhuitl, B. Kiefer, S. Racioppa, I. Kruijff-Korbayová, G. Athanasopoulos, V. Enescu, et al., Journal of Human-Robot Interaction (2013), in press.

    Google Scholar 

  68. [68]

    D. Feil-Seifer and M. J. Matari¢, Interaction Studies 11, 208 (2010).

    Article  Google Scholar 

  69. [69]

    B. Scassellati, Autonomous Robots 12, 13 (2002).

    MATH  Article  Google Scholar 

  70. [70]

    C. Balkenius and P. Björne, in Proceedings of the First International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems (2001), pp. 61–67.

    Google Scholar 

  71. [71]

    J. Butterfield, O. C. Jenkins, D. M. Sobel, and J. Schwertfeger, International Journal of Social Robotics 1, 41 (2009).

    Article  Google Scholar 

  72. [72]

    P. Bonato, Journal of NeuroEngineering and Rehabilitation 2 (2005).

  73. [73]

    J. A. Kientz, G. R. Hayes, T. L. Westeyn, T. Starner, and G. D. Abowd, Pervasive Computing 6, 28 (2007).

    Article  Google Scholar 

  74. [74]

    C.-H. Ming and A. H. Tewfik, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC (2011), pp. 365–368.

    Google Scholar 

  75. [75]

    M. S. Goodwin, W. F. Velicer, and S. S. Intille, Behavior Research Methods 40, 328 (2008).

    Article  Google Scholar 

  76. [76]

    R. R. Fletcher, K. Dobson, M. S. Goodwin, H. Eydgahi, O. Wilder-Smith, D. Fernholz, Y. Kuboyama, E. B. Hedman, P. Ming-Zher, and R. W. Picard, IEEE Transactions on Information Technology in Biomedicine 14, 215 (2010).

    Article  Google Scholar 

  77. [77]

    O. Bogdashina, Sensory perceptual issues in autism and asperger syndrome: different sensory experiences — different perceptual worlds (Jessica Kingsley Publishers, 2003).

    Google Scholar 

  78. [78]

    L. Steels, Trends in cognitive sciences 7, 308 (2003).

    Article  Google Scholar 

  79. [79]

    A. Cangelosi and T. Riga, Cognitive science 30, 673 (2006).

    Article  Google Scholar 

  80. [80]

    D. Marocco, A. Cangelosi, T. Belpaeme, and K. Fischer, Frontiers in Neurorobotics 4 (2010).

    Google Scholar 

  81. [81]

    L. Fogassi, P. F. Ferrari, B. Gesierich, S. Rozzi, F. Chersi, and G. Rizzolatti, Science 308, 662 (2005).

    Article  Google Scholar 

  82. [82]

    W. Erlhagen, A. Mukovskiy, F. Chersi, and E. Bicho, in Proceedings of the 6th IEEE International Conference on Development and Learning (Imperial College London, 2007), pp. 140–145.

    Google Scholar 

  83. [83]

    S. Thill and T. Ziemke, in SAB 2010, LNAI 6226, edited by S Doncieux et al (Springer, Heidelberg, 2010), pp. 413–423.

  84. [84]

    S. Thill, H. Svensson, and T. Ziemke, Cognitive Computation 3, 525 (2011).

    Article  Google Scholar 

  85. [85]

    S. Mitra and T. Acharya, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 37, 311 (2007).

    Article  Google Scholar 

  86. [86]

    Y. Nakano and T. Nishida, Conversational Informatics: an Engineering Approach (John Wiley & Sons, Ltd, 2007), chap. Attentional behaviours as nonverbal communicative signals in situated interactions with conversational agents, pp. 85–102.

    Google Scholar 

  87. [87]

    C. Sidner and C. Lee, Conversational Informatics: an Engineering Approach (John Wiley & Sons, Ltd, 2007), chap. Attentional Gestures in Dialogues between People and Robots.

    Google Scholar 

  88. [88]

    H. H. Clark, Using language, Vol. 4 (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  89. [89]

    J. Decety and J. Grèzes, Trends in cognitive sciences 3, 172 (1999).

    Article  Google Scholar 

  90. [90]

    R. Saxe, D. Xiao, G. Kovacs, D. Perrett, and N. Kanwisher, Neuropsychologia 42, 1435 (2004).

    Article  Google Scholar 

  91. [91]

    M. Iacoboni, I. Molnar-Szakacs, V. Gallese, G. Buccino, J. Mazziotta, and G. Rizzolatti, PLoS Biology 3, e79 (2005).

    Article  Google Scholar 

  92. [92]

    R. Black and M. Shiffrar, Annual Review of Psychology 58, 47 (2007).

    Article  Google Scholar 

  93. [93]

    M. Giese and T. Poggio, Nature Reviews Neuroscience 4, 179 (2003).

    Article  Google Scholar 

  94. [94]

    G. Johansson, Attention, Perception & Psychophysics 14, 201 (1973).

    Article  Google Scholar 

  95. [95]

    P. E. Hemeren and S. Thill, Frontiers in Psychology 1 (2011).

  96. [96]

    S. Thill, P. E. Hemeren, and B. Durán, in European Perspectives on Cognitive Science: Proceedings of the European Conference on Cognitive Science 2011, edited by B. Kovino, A. Karmiloff-Smith, and N. J. Nersessian (NBU Press, Sofia, 2011).

  97. [97]

    A. Atkinson, W. Dittrich, A. Gemmell, and A. Young, Perception 33, 717 (2004).

    Article  Google Scholar 

  98. [98]

    F. Pollick, H. Paterson, A. Bruderlin, and A. Sanford, Cognition 82, 851 (2001).

    Article  Google Scholar 

  99. [99]

    R. Arkin, Journal of Robotic Systems 9, 197 (1992).

    Article  Google Scholar 

  100. [100]

    D. François, K. Dautenhahn, and D. Polani, in Artificial Life, 2009. ALife’09. IEEE Symposium on (IEEE, 2009), pp. 45–52.

    Google Scholar 

  101. [101]

    C. Breazeal, Designing sociable robots (MIT PRess, 2002).

    Google Scholar 

  102. [102]

    D. Mazzei, N. Lazzeri, L. Billeci, R. Igliozzi, A. Mancini, A. Ahluwalia, F. Muratori, and D. De Rossi, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2011), pp. 4515–4518.

    Google Scholar 

  103. [103]

    M. Sarabia, R. Ros, and Y. Demiris, in Proc. 11th IEEE-RAS Int Humanoid Robots (Humanoids) (2011), pp. 670–675.

    Google Scholar 

  104. [104]

    M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Ng, in Open-source Software Workshop of the International Conference on Robotics and Automation (2009).

    Google Scholar 

  105. [105]

    H. Bruyninckx, P. Soetens, and B. Koninckx, in Proceedings of the 2003 IEEE International Conference on Robotics and Automation (2003), pp. 2766–2771.

    Google Scholar 

  106. [106]

    J. C. Baillie, in IEEE/RSJ International Conference onIntelligent Robots and Systems (2005), pp. 820–825.

    Google Scholar 

  107. [107]

    J. Jackson, IEEE Robotics & Automation Magazine 14, 82 (2007).

    Article  Google Scholar 

  108. [108]

    A. Tapus, A. Peca, A. Aly, C. Pop, L. Jisa, S. Pintea, A. S. Rusu, and D. O. David, Interaction Studies 13, 315 (2012).

    Article  Google Scholar 

  109. [109]

    B. Vanderborght, R. E. Simut, J. Saldien, C. A. Pop, A. S. Rusu, S. Pintea, D. Lefeber, and D. David, in Cognitive Neuroscience Robotics workshop IROS (2011), pp. 1–6.

    Google Scholar 

  110. [110]

    H. Kozima, C. Nakagawa, and Y. Yasuda, in Robot and Human Interactive Communication, 2005. ROMAN 2005. IEEE International Workshop on (IEEE, 2005), pp. 341–346.

    Google Scholar 

  111. [111]

    A. Sloman, Cognitive Processing 1, 178 (2001).

    Google Scholar 

  112. [112]

    D. Norman, A. Ortony, and D. Russell, IBM Systems Journal 42, 38 (2003).

    Article  Google Scholar 

  113. [113]

    T. Belpaeme, P. Baxter, R. Read, R. Wood, H. Cuayáhuitl, B. Kiefer, S. Racioppa, I. Kruijff-Korbayová, G. Athanasopoulos, V. Enescu, et al., Journal of Human-Robot Interacion 1, 33 (2013).

    Google Scholar 

  114. [114]

    A. Seth, T. Prescott, and J. Bryson, Modelling natural action selection (Cambridge University Press, 2011).

    Google Scholar 

  115. [115]

    C. Breazeal and B. Scassellati, in Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI99) (1999), pp. 1146–1151.

    Google Scholar 

  116. [116]

    K. Loveland and S. Landry, Journal of Autism and Developmental Disorders 16, 335 (2007).

    Article  Google Scholar 

  117. [117]

    H. Miwa, K. Itoh, M. Matsumoto, M. Zecca, H. Takanobu, S. Roccella, M. Carrozza, P. Dario, and A. Takanishi, in IEEE/RSJ International Conference on Intelligent RObots and Systems (2004), pp. 2203–2208.

    Google Scholar 

  118. [118]

    H. Ishiguro and S. Nishio, Journal of Artificial Organs 10, 133 (2007).

    Article  Google Scholar 

  119. [119]

    H. Miwa, K. Itoh, D. Ito, H. Takanobu, and A. Takanishi, in IEEE International Conference on Robotics and Automation (2004), pp. 128–133.

    Google Scholar 

  120. [120]

    P. Ekman and W. Friesen, Facial Action Coding System: A Technique for the Measurement of Facial Movement. (Consulting Psychologists Press, Palo Alto, 1978).

    Google Scholar 

  121. [121]

    F. Delaunay, J. de Greeff, and T. Belpaeme, inProceeding of the 5th ACM/IEEE international conference on Human-robot interaction (2010), pp. 39–44.

    Google Scholar 

  122. [122]

    J. Saldien, K. Goris, B. Vanderborght, J. Vanderfaeillie, and D. Lefeber, International Journal of Social Robotics 2, 377 (2010).

    Article  Google Scholar 

  123. [123]

    A. Sloman, in Workshop on Metareasoning (AAAI, 2011), 8, pp. 12–20.

    Google Scholar 

  124. [124]

    B. Scassellati, in IEEE International Workshop on Robot and Human Interactive Communication (IEEE, 2005), pp. 585–590.

    Google Scholar 

  125. [125]

    F. Amirabdollahian, B. Robins, K. Dautenhahn, and Z. Ji, in Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (IEEE, 2011), pp. 5347–5351.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Serge Thill.

About this article

Cite this article

Thill, S., Pop, C.A., Belpaeme, T. et al. Robot-assisted therapy for autism spectrum disorders with (partially) autonomous control: Challenges and outlook. Paladyn 3, 209–217 (2012). https://doi.org/10.2478/s13230-013-0107-7

Download citation

Keywords

  • Robot-Assisted Therapy
  • Shared Autonomy
  • Theory of Mind
  • Autism Spectrum Disorders