, Volume 3, Issue 4, pp 172–180

A predictive network architecture for a robust and smooth robot docking behavior

Research Article

DOI: 10.2478/s13230-013-0106-8

Cite this article as:
Zhong, J., Weber, C. & Wermter, S. Paladyn (2012) 3: 172. doi:10.2478/s13230-013-0106-8


Robots and living beings exhibit latencies in their sensorimotor processing due to mechanical and electronic or neural processing delays. A reaction typically occurs to input stimuli of the past. This is critical not only when the environment changes (e.g. moving objects) but also when the agent itself moves. An agent that does not predict while moving may need to remain static between sensory input acquisition and output response to guarantee that the response is appropriate to the percept. We propose a biologically-inspired learning model of predictive sensorimotor integration to compensate for this latency. In this model, an Elman network is developed for sensory prediction and sensory filtering; a Continuous Actor-Critic Learning Automaton (CACLA) is trained for continuous action generation. For a robot docking experiment, this architecture improves the smoothness of the robot’s sensory input and therefore results in a faster and more accurate continuous approach behavior.


Sensorimotor integration Continuous Actor-Critic Learning Automaton Elman network Sensory prediction 

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Knowledge Technology, Department of Computer ScienceUniversity of HamburgHamburgGermany

Personalised recommendations