Skip to main content
Log in

Genetic algorithm using a modified backward pass heuristic for the dynamic facility layout problem

  • Research Article
  • Published:
Paladyn

Abstract

Layout planning in a manufacturing company is an important economical consideration. In the past, research examining the facility layout problem (FLP) generally concerned static cases, where the material flows between facilities in the layout have been assumed to be invariant over time. However, in today’s real-world scenario, manufacturing system must operate in a dynamic and market-driven environment in which production rates and product mixes are continuously adapting. The dynamic facility layout problem (DFLP) addresses situations in which the flow among various facilities changes over time. Recently, there is an increasing trend towards implementation of industrial robot as a material handling device among the facilities. Reducing the robot energy usage for transporting materials among the facilities of an optimal layout for completing a product will result in an increased life for the robots and thus enhance the productivity of the manufacturing system. In this paper, we present a hybrid genetic algorithm incorporating jumping genes operations and a modified backward pass pair-wise exchange heuristic to determine its effectiveness in optimizing material handling cost while solving the DFLP. A computational study is performed with several existing heuristic algorithms. The experimental results show that the proposed algorithm is effective in dealing with the DFLP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Heragu, Facilities design, BWS, Boston, 1997

    Google Scholar 

  2. D. Li, P. L. P. Rau, Y. Li, A cross-cultural study: Effect of robot appearance and Task, INT J SOC ROBOT, 2, (2010), 175–186

    Article  Google Scholar 

  3. K. Holck, C. Munoz, Robots in Manufacturing, Available from: http://mfg.eng.rpi.edu/gmp/SProjectsPwrpt/s11/ GMP Final Robotics Presentation.pdf

  4. H. Zhang, Factory automation with industrial robots, ARB Robotics R&D Center, 2011

  5. A. Tompkins, Facilities planning, 3rd ed., John Wiley & Sons, New York, 2003

    Google Scholar 

  6. A. R. McKendall Jr, J. Shang, Hybrid ant systems for the dynamic facility layout problem, COMPUT OPER RES, 33, (2006), 790–803

    Article  MathSciNet  MATH  Google Scholar 

  7. K. S. N. Ripon, K. Glette, M. Hovin, J. Torresen, Dynamic facility layout problem with hybrid genetic algorithm, In M. Oussalah, R. Mitchell, N. H. Siddique (Eds.), Proceedings of The IEEE 9th International Conference on Cybernetic Intelligent Systems (CIS), (2010, Reading, UK), IEEE Systems, Man, & Cybernetics Society, 2010, 33–38

  8. M. A. El-Baz, A genetic algorithm for facility layout problems of different manufacturing environments, COMPUT IND ENG, 47, (2004), 233–246

    Article  Google Scholar 

  9. Z. Jian, L. A. Ping, Genetic algorithm for robot workcell layout problem, (2009, Xiamen, China), Proceedings of The WRI World Congress on Software Engineering (WCSE 2009), 2009, 460–464

  10. K. Mitsuhashi, K. Yamato, Layout planning and simulation for application of robots, ADV ROBOTICS, 2,1, (1987), 87–98

    Article  Google Scholar 

  11. V. Nata, A. Tubaileh, The machine layout problem in robot cells, INT J PROD RES, 36,5, (1998), 1273–1292

    Article  Google Scholar 

  12. A. Tubaileh, I. Hammad, L. A. Kafafi, Robot cell planning, ENG TECH, 26, (2007), World Academy of Science, 250–253, 2007

    Google Scholar 

  13. A. Drira, H. Pierreval, S. H. Gabouj, Facility layout problems: A survey, ANNU REV CONTROL, 31,2, (2007), 255–267

    Article  Google Scholar 

  14. I. Castillo, T. Sim, A spring-embedding approach for the facility layout problem, J OPER RES SOC, 55,1, (2004), 73–81

    Article  MATH  Google Scholar 

  15. J. Balakrishnan, C. H. Cheng, Dynamic layout algorithms: A state-of-the-art survey, OMEGA-INT J MGMT SCI, 26,4, (1998), 507–521

    Article  Google Scholar 

  16. J. H. Holland, Adaptation in natural and artificial systems, The University of Michigan Press, Ann Arbor, MI, 1975

    Google Scholar 

  17. M. H. Hu, M. -J. Wang, Using genetic algorithms on facilities layout problems, INT J ADV MANUF TECH, 23, 3–4, (2004), 301–310

    Google Scholar 

  18. J. Balakrishnan, C. H. Cheng, D. G. Conway, An improved pair-wise exchange heuristic for the dynamic plant layout problem, INT J PROD RES, 38,13, (2000), 3067–3077

    Article  Google Scholar 

  19. K. S. Tang, R. J. Yin, S. Kwong, K. T. Ng, K. F. Man, A theoretical development and analysis of jumping gene genetic algorithm, IEEE T IND INFORM, 7,3, (2011), 408–418

    Article  Google Scholar 

  20. W. S. Tang, S. Kwong, K. F. Man, A jumping genes paradigm: Theory, verification and applications, IEEE CIRC SYST MANAG M, 8,4, (2008), 18–36

    Article  Google Scholar 

  21. T. L. Urban, A heuristic for the dynamic facility layout problem, IIE TRANS, 25,4, (1993), 57–63

    Article  Google Scholar 

  22. M. J. Rosenblatt, The dynamics of plant layout, MANAGE SCI, 32,1, (1986), 76–86

    Article  MATH  Google Scholar 

  23. J. Balakrishnan, C. H. Cheng, The dynamic plant layout problem: Incorporating rolling horizons and forecast uncertainty, OMEGA-INT J MGMT SCI, 37,1, (2009), 165–177

    Article  Google Scholar 

  24. S. P. Singh, R. R. K. Sharma, A review of different approaches to the facility layout problems, INT J ADV MANUF TECH, 30,5–6, (2006), 425–433

    Article  Google Scholar 

  25. J. Balakrishnan, R. F. Jacobs, M. A. Venkataramanan, Solutions for the constrained dynamic facility layout problem, EUR J OPER RES, 57,2, (1992), 280–286

    Article  MATH  Google Scholar 

  26. D. G. Conway, M. A. Venkataramanan, Genetic search and the dynamic facility layout problem, COMPUT OPER RES, 21,8, (1994), 955–960

    Article  MATH  Google Scholar 

  27. J. Balakrishnan, C. H. Cheng, Genetic search and the dynamic layout problem, COMPUT OPER RES, 27,6, (2000), 587–593

    Article  MATH  Google Scholar 

  28. J. Balakrishnan, C. H. Cheng, D. G. Conway, C. M. Lau, A hybrid genetic algorithm for the dynamic plant layout problem, INT J PROD ECON, 86, (2003), 107–120

    Article  Google Scholar 

  29. S. P. Singh, R. R. K. Sharma, Genetic algorithm based heuristics for the dynamic facility layout problem, EUR J MGMT, 8,1, (2008), 128–134

    Google Scholar 

  30. B. K. Kaku, J. B. Mazzola, A tabu search heuristic for the dynamic plant layout problem, INFORMS J COMPUT, 9,4, (1997), 374–384

    Article  MATH  Google Scholar 

  31. J. B. Erel, J. Ghosh, J. T. Simon, New heuristic for the dynamic layout problem, J OPER RES SOC, 54, (2003), 1275–1282

    Article  MATH  Google Scholar 

  32. A. Baykasoglu, N. N. Z. Gindy, A simulated annealing algorithm for the dynamic layout problem, COMPUT OPER RES, 28, (2001), 1403–1426

    Article  MathSciNet  MATH  Google Scholar 

  33. A. R. McKendall Jr, J. Shang, S. Kuppusamy S, Simulated annealing heuristics for the dynamic facility layout problem, COMPUT OPER RES, 33,8, (2006), 2431–44

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Rezazadeh, M. Ghazanfari, M. S. Mehrabad, An extended discrete particle swarm optimization algorithm for the dynamic facility layout problem, J ZHEJIANG UNIV-SC A, 10,4, (2009), 520–529

    Article  MATH  Google Scholar 

  35. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-objective genetic algorithm: NSGA-II, IEEE T EVOLUT COMPUT, 6,2, (2002), 182–197

    Article  Google Scholar 

  36. K. F. Man, T. M. Chan, K. S. Tang, S. Kwong, Jumping-genes in evolutionary computing, Proceedings of The 30th Annual Conference of the IEEE Industrial Electronics Society, (2004, Pusan, Korea), IEEE Industrial Electronics Society, 2004, 1268–1272

  37. K. S. N. Ripon, K. Glette, M. Hovin, J. Torresen, Multi-objective evolutionary approach for solving facility layout problem using local search, In Proceedings of the 2010 ACM Symposium on Applied Computing, (2010, Sierre, Switzerland), ACM, New York, NY, USA, 2010, 1155–1156

    Chapter  Google Scholar 

  38. S. Y. Zheng, S. H. Yeung, W. S. Chan, K. F. Man, K. S. Tang, Design of broadband hybrid coupler with tight coupling using jumping gene evolutionary algorithm, IEEE T IND ELECTRON, 56,8, (2009), 2987–2991.

    Article  Google Scholar 

  39. K. S. N. Ripon, Hybrid evolutionary approach for multi-objective job-shop scheduling problem, MALAYAS J COMPUT SCI, 20,2, (2007), 183–198

    Google Scholar 

  40. T. M. Chan, K. F. Man, K. S. Tang, S. Kwong, A jumping-genes paradigm for optimizing factory WLAN network, IEEE T IND INFORM, 3,1, (2007), 33–43

    Article  Google Scholar 

  41. K. S. N. Ripon, S. Kwong, K. F. Man, A real coding jumping gene genetic algorithm (RJGGA) for multiobjective optimization, INFORM SCIENCES, 177,2, (2007), 632–654

    Article  MATH  Google Scholar 

  42. A. Kusiak, S. Heragu, The facility layout problem, EUR J OPER RES, 29, (1987), 229–251

    Article  MathSciNet  MATH  Google Scholar 

  43. L. Wang, S. Keshavarzmanesh, H. -Y. Feng, A hybrid approach for dynamic assembly shop floor layout, Proceedings of The 6th Annual IEEE Conference on Automation Science and Engineering (2010, Toronto, Ontario, Canada), 2010, 604–609

  44. V. Kumar, G. Bekey, Y. Zheng, Industrial, personal and service robots, In: G. Bekey (Ed.), Robotics: State Of The Art And Future Challenges (World Technology Evaluation Center, Lancaster, 2008), 89–101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazi Shah Nawaz Ripon.

Additional information

The paper has been partially published in IEEE 9th International Conference on Cybernetic Intelligent Systems (CIS), 2010, Reading, UK.

About this article

Cite this article

Ripon, K.S.N., Glette, K., Koch, D. et al. Genetic algorithm using a modified backward pass heuristic for the dynamic facility layout problem. Paladyn 2, 164–174 (2011). https://doi.org/10.2478/s13230-012-0008-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13230-012-0008-1

Keywords

Navigation