Ectopic expression of WsMBP1 from Withania somnifera in transgenic tobacco shows insecticidal activity against teak defoliator Hyblaea puera (Lepidoptera: Hyblaeidae)

Abstract

An insecticidal mannose binding lectin gene of Withania somnifera, WsMBP1 was constitutively expressed in tobacco plants. Instar-wise study on the response of Hyblaea puera larvae to the total protein extracted from transgenic tobacco was conducted and survivability percent was 33.33% and 55.55% in the first and the second instars, respectively. Minimum survivability of 22.22% was registered in the third instar. Further, two-fold reduction was observed in mean pre-pupal and pupal weight in the third instar larval populations fed with lectin protein compared to the control populations. The functional confirmation of the insecticidal activity of WsMBP1 established its potential as a novel gene resource for future transformation studies in developing teak genotypes tolerant to its leaf defoliator, H. puera.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

Act :

Actin

ANOVA:

Analysis of variance

BAP:

6-Benzylaminopurine

bp:

Base pair

BSA:

Bovine serum albumin

cDNA:

complementary DNA

Ct:

cycle threshold

cv:

Cultivated Variety

gms:

Grams

Ha:

Hectare

HpNPV:

H. puera nucleopolyhedrovirus

hpt :

Hygromycin

m3/ha:

Cubic meter/ hectare

mg/L:

Milligram/ litre

min:

Minute

mM:

Micromole

MS:

Murashige and Skoog

NAA:

1-Naphthaleneacetic acid

ng:

Nanogram

nm:

Nanometer

PCR:

Polymerase chain reaction

qRT-PCR:

Quantitative real time polymerase chain reaction

sec:

Second

T-DNA:

transfer DNA

mg:

Milligram

µM:

Micromole

References

  1. Ananthakrishnan TN (2017) Insect biodiversity: functional dynamics and ecological perspectives. Scientific Publishers, India

    Google Scholar 

  2. Appanch S, Yusoff SYM, Jasery AW, Choon KK (2000) Insect pests in teak. Proc. 4th Conference, Forest Research Institute, Malaysia, 8: 2–4

  3. Arun PR, Mahajan MV (2012) Ecological costs and benefits of teak defoliator (Hyblaea puera Cramer) outbreaks in a mangrove ecosystem. Mar Sci 2(5):48–51. https://doi.org/10.5923/j.ms.20120205.02

    Article  Google Scholar 

  4. Atalah AB, Smagghe G, Van Damme EJ (2014) Orysata, a jacalin-related lectin from rice, could protect plants against biting-chewing and piercing sucking insects. Plant Sci 21(8):221–222. https://doi.org/10.1016/j.plantsci.2014.01.010

    CAS  Article  Google Scholar 

  5. Baksha MW, Crawley MJ (1995) Relative preference of different host plants to teak defoliator, Hyblaea puera Cram. (Hyblaeidae: Lepidoptera) in Bangladesh. Bangladesh J For Sci 24:21–25

    Google Scholar 

  6. Biswas O, Panja B, Garain PK, Shah SK, Modak BK, Mitra B (2017) Hyblaea puera (Cramer, 1777) [Lepidoptera: Hyblaeidae] Infestation on Avicennia alba Blume in Sunderban Biosphere Reserve, West Bengal, India. Proc Zool Soc 71:331. https://doi.org/10.1007/s12595-017-0216-0

    Article  Google Scholar 

  7. Bubner B, Baldwin IT (2004) Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Rep 23:263–271. https://doi.org/10.1007/s00299-004-0859-y

    CAS  Article  PubMed  Google Scholar 

  8. Chandrasekhar N, Sajeev TV, Sudheendrakumar VV, Banerjee M (2005) Population dynamics of the teak defoliator (Hyblaea puera Cramer) in Nilambur teak plantations using randomly amplified gene encoding primers (RAGEP). BMC Ecol 5:1. https://doi.org/10.1186/1472-6785-5-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Felton GW (2005) Indigestion is a plant’s best defense. Proc Natl Acad Sci U S A 102:18771–18772. https://doi.org/10.1073/pnas.0509895102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Gaidamashvili M, Khurtsidze E (2014) Larvicidal activity of mistletoe lectin on lepidopteran pests: mechanisms of action. In: Proc. International Conference on Civil, Biological and Environmental Engineering (CBEE-2014), May 27–28, 2014 Istanbul, Turkey

  11. George BS, Silambarasan S, Senthil K, Jacob JP, Dasgupta MG (2018) Characterization of an insecticidal protein from Withania somnifera against lepidopteran and hemipteran pest. Mol Biotechnol 60:290–301. https://doi.org/10.1007/s12033-018-0070-y

    CAS  Article  PubMed  Google Scholar 

  12. Ghude DB, Gogate MG, Nair KSS, Sharma JK, Verma RV (1993) Insect-pests of teak in Maharashtra, India. Impact of diseases and insect pests in tropical forests. Proc of the IUFRO Symposium, Nov. 23–26, Peechi, India, pp 995–997

  13. Hedegart T (1976) Breeding system, variation and genetic improvement of teak, (Tectona grandis Linn. f.). In: Burley J, Styles BT (eds) Tropical Trees. Academic, London, pp 109–123

    Google Scholar 

  14. Hossain MA, Maiti MK, Basu A, Sen S, Ghosh AK, Sen SK (2006) Transgenic expression of onion leaf lectin gene in Indian mustard offers protection against aphid colonization. Crop Sci 46:2022–2032. https://doi.org/10.2135/cropsci2005.11.0418

    CAS  Article  Google Scholar 

  15. Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 3:132–140. https://doi.org/10.2144/01311rr04

    Article  Google Scholar 

  16. Javaregowda, Naik LK (2008) Management of teak defoliator, Hyblaea puera Cramer in teak plantation. Karnataka J Agric Sci 21(4):516–518

  17. Jayaregowda, Naik LK (2007) Seasonal incidence of teak defoliator, Hyblaea puera cramer (Hyblaeidae: Lepidoptera) in Uttara Kannada District of Karnataka. Karnataka J Agric Sci 20:153–154

  18. Jin S, Zhang X, Daniell H (2012) Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, Lepidopteran insects, bacterial and viral pathogens. Plant Biotechnol J 10:313–327. https://doi.org/10.1111/j.1467-7652.2011.00663.x

    CAS  Article  PubMed  Google Scholar 

  19. Kaosa-ard A (1989) Teak (Tectona grandis L.f.) - its natural distribution and related factors. Nat Hist Bull Siam Soc 29:55–74

    Google Scholar 

  20. Kaur M, Singh K, Rup PJ, Kamboj SS, Singh J (2009) Anti-insect potential of lectins from Arisaema species towards Bactrocera cucurbitae. J Environ Biol 30:1019–1023

    CAS  PubMed  Google Scholar 

  21. Kaur M, Singh J, Kamboj SS, Saxena AK (2011) A lectin with anti-proliferative, mitogenic and anti-insect potential from the tubers of Caladium bicolor Vent. Asian Australas J Plant Sci Biotechnol 5:1–9

    Google Scholar 

  22. Keogh RM (1979) Does teak have a future in tropical America? A survey of Tectona grandis in the Caribbean, Central America, Venezuela and Columbia. Unasylva 31:13–19

    Google Scholar 

  23. Kollert W, Kleine M (2017) The global teak study. Analysis, evaluation and future potential of teak resources, IUFRO World Series, 36, Vienna

  24. Koskela J, Vinceti B, Dvorak W, Bush D, Dawson IK, Loo J, Kjaer ED, Navarro C, Padolina C, Bordács S, Bordacs S, Jamnadass R, Graudal L, Ramamonjisoa L (2014) Utilization and transfer of forest genetic resources: a global review. For Ecol Manag 333:22–34. https://doi.org/10.1016/j.foreco.2014.07.017

    Article  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Macedo M, Oliveira C, Oliveira C (2015) Insecticidal activity of plant lectins and potential application in crop protection. Molecules 20:2014–2033. https://doi.org/10.3390/molecules20022014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–162. https://doi.org/10.1016/0022-2836(70)90051-3

    CAS  Article  PubMed  Google Scholar 

  28. Martinez DS, Freire MD, Mazzafera P, Araujo-Júnior RT, Bueno RD, Macedo ML (2012) Insecticidal effect of labramin, a lectin-like protein isolated from seeds of the beach apricot tree, Labramia bojeri, on the Mediterranean flour moth, Ephestia kuehniella. J Insect Sci 12:62. https://doi.org/10.1673/031.012.6201

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Mondal HA, Roy A, Gupta S, Das S (2012) Exploring the insecticidal potentiality of Amorphophallus paeonifolius tuber agglutinin in hemipteran pest management. Am J Plant Sci 3:780–790. https://doi.org/10.4236/ajps.2012.36094

    CAS  Article  Google Scholar 

  30. Naghdi M, Bandani AR (2012) Snowdrop Lectin (GNA) Affects Growth and Development of Spodoptera exigua (Hubner). J Agr Sci Tech-Iran 14:469–477

    CAS  Google Scholar 

  31. Nair KSS (1988) The Teak defoliator in Kerala, India. In: Berryman AA (ed) Dynamics of forest insect populations. Springer, Boston, pp 267–289

    Google Scholar 

  32. Nair KSS, Kedarnath S, Koshy MP, Sudheendrakumar VV, Varma RV, Mohanadas K, Mathew G (1989) Search for natural resistance to the insect pest, Hyblaea puera in teak. KFRI Research Report, No. 62, Kerala Forest Research Institute, Peechi, Kerala, India, p30

  33. Nair KSS, Sudheendrakumar VV, Varma RV, Chacko KC (1985) Studies on the seasonal incidence of defoliators and the effect of defoliation on volume increment of teak. Report No. 30, Kerala Forest Research Institute Research, Peechi

  34. Norwati A, Norlia B, Mohd Rosli H, Norwati M, Abdullah R (2011) Development of transgenic teak (Tectona grandis) expressing a cry1Ab gene for control of the skeletoniser. AsPac J Mol Biol Biotechnol 19:149–156

    Google Scholar 

  35. Oliveira CF, Luz LA, Paiva PM, Coelho LC, Marangoni S, Macedo ML (2011) Evaluation of seed coagulant Moringa oliefera lectin (cMoL) as a bioinsecticidal tool with potential for the control of insects. Process Biochem 46:498–504. https://doi.org/10.1016/j.procbio.2010.09.025

    CAS  Article  Google Scholar 

  36. Palanisamy K, Hegde M, Yi JS (2009) Teak (Tectona grandis Linn. F.): A renowned commercial timber species. J For Environ Sci 25:1–24

    Google Scholar 

  37. Pandey V, Singh AK, Sharma RP (2010) Biodiversity of insect pests associated with teak (Tectona grandis L.f.) in eastern Uttar Pradesh of India. Res J For 4:136–144. https://doi.org/10.3923/rjf.2010.136.144

    Article  Google Scholar 

  38. Powell KS (2001) Antimetabolic effects of plant lectins towards nymphal stages of the planthoppers Tarophagous proserpina and Nilaparvata lugens. Entomol Exp Appl 99(1):71–78. https://doi.org/10.1046/j.1570-7458.2001.00803.x

    CAS  Article  Google Scholar 

  39. Powell KS, Gatehouse AMR, Hilder VA, Gatehouse JA (1993) Antimetabolic effects of plant lectins and plant and fungal enzymes on the nymphal stages of two important rice pests, Nilaparvata lugens and Nephotettix cinciteps. Entomol Exp Appl 66(2):119–126. https://doi.org/10.1111/j.1570-7458.1993.tb00699.x

    CAS  Article  Google Scholar 

  40. Ramzi S, Sahragard A, Sendi JJ, Aalami A (2013) Effects of an extracted lectin from Citrullus colocynthis L. (Cucurbitaceae) on survival, digestion and energy reserves of Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae). Front Physiol 4:328. https://doi.org/10.3389/fphys.2013.00328

    Article  PubMed  PubMed Central  Google Scholar 

  41. Remadevi OK, Sapna Bai N, Sasidharan TO, Balachander M, Dharmarajan P (2013) Attempts at controlling teak defoliator (Hyblaea puera Cramer, Lepidoptera, Hyblaeidae) with the entomopathogenic fungus, Metarhizium anisopliae (Metsch.): laboratory, nursery and field trials. Int J Pest Manag 59:236–242. https://doi.org/10.1080/09670874.2013.832438

    Article  Google Scholar 

  42. Reyes-Montaño EA, Vega-Castro NA (2018) Plant Lectins with Insecticidal and Insectistatic Activities. In: Begum G (ed) Insecticides - Agriculture and Toxicology, IntechOpen, London. https://doi.org/10.5772/intechopen.74962

  43. Roychoudhury N, Chourasia M, Jalil P, Joshi KC (2010) Field screening for non-preference resistance in some teak clones of Madhya Pradesh to major insect pests. Indian J For 33:367–371

    Google Scholar 

  44. Roychoudhury N, Chandra S, Singh RB (2018) Biological control of Hyblaea puera and Eutectona machaeralis by introduction of native egg parasitoid, Trichogramma raoi in teak forests. Pestology 42(6):36–41

    Google Scholar 

  45. Sadeghi A, Van Damme EJM, Michiels K, Kabera A, Smagghe G (2009a) Acute and chronic insecticidal activity of a new mannose-binding lectin from Allium porrum against Acyrthosiphon pisum via an artificial diet. Can Entomol 141(1):95–101. doi:https://doi.org/10.4039/n08-060

    Article  Google Scholar 

  46. Sadeghi A, Smagghe G, Jurado-Jácome E, Peumans WJ, Van Damme EJM (2009b) Laboratory study of the effects of leek lectin (APA) in transgenic tobacco plants on the development of cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae). Eur J Entomol 106(1):21–28. https://doi.org/10.14411/eje.2009.003

    CAS  Article  Google Scholar 

  47. Singh K, Kaur M, Rup PJ, Singh J (2006) Exploration for anti-insect properties of lectin from seeds of soybean (Glycine max) using Bactrocera cucurbitae as a model. Phytoparasitica 34:463–473. https://doi.org/10.1007/BF02981200

    CAS  Article  Google Scholar 

  48. Subr Z, Novakova S, Drahovska H (2006) Detection of transgene copy number by analysis of the T1 generation of tobacco plants with introduced P3 gene of potato virus A. Acta Virol 50:135–138

    CAS  PubMed  Google Scholar 

  49. Sudheendrakumar VV, Sajeev TV, Bindu TN (2011) Studies on controlling the teak defoliator outbreaks by seeding the baculovirus, HpNPV in epicenter populations. Technical Report No. 418, Kerala Forest Research Institute, Peechi, Kerala, India. https://doi.org/10.13140/2.1.3559.8089

  50. Thakur K, Kaur M, Kaur S, Kaur A, Kamboj SS, Singh J (2012) Purification of Colocasia esculenta lectin and determination of its antiinsect potential towards Bactrocera cucurbitae. J Environ Biol 34:31–36

    Google Scholar 

  51. Vandenborre G, Smagghe G, Van Damme EJM (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72:1538–1550. https://doi.org/10.1016/j.phytochem.2011.02.024

    CAS  Article  PubMed  Google Scholar 

  52. Vasconcelos IM, Oliveira JT (2004) Antinutritional properties of plant lectins. Toxicon 44(4):385–403. https://doi.org/10.1016/j.toxicon.2004.05.005

    CAS  Article  PubMed  Google Scholar 

  53. Veluthakkal R, Ghosh Dasgupta M (2015) Agrobacterium-mediated transformation of chitinase gene from the actinorhizal tree Casuarina equisetifolia in Nicotiana tabacum. Biologia 70:905–914. https://doi.org/10.1515/biolog-2015-0114

    CAS  Article  Google Scholar 

  54. Yarasi B, Sadumpati V, Immanni CP, Vudem DR, Khareedu VR (2008) Transgenic rice expressing Allium sativum leaf lectin (ASAL) exhibits high level resistance against major sap-sucking pests. BMC Plant Biol 8:102. https://doi.org/10.1186/1471-2229-8-102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Zapata N, Van Damme EJ, Vargas M, Devotto L, Smagghe G (2016) Insecticidal activity of a protein extracted from bulbs of Phycella australis Ravenna against the aphids Acyrthosiphon pisum Harris and Myzus persicae Sulzer. Chil J Agr Res 76(2):188–194. https://doi.org/10.4067/S0718-58392016000200008

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge Department of Biotechnology, Government of India, for funding the research work. The funding support as research fellowship was provided to BSG by Department of Biotechnology, Government of India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Modhumita Ghosh Dasgupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig. 1

(DOCX 216 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

George, B.S., Silambarasan, S., Senthil, K. et al. Ectopic expression of WsMBP1 from Withania somnifera in transgenic tobacco shows insecticidal activity against teak defoliator Hyblaea puera (Lepidoptera: Hyblaeidae). Biologia (2020). https://doi.org/10.2478/s11756-020-00531-w

Download citation

Keywords

  • Instar
  • Insect resistance
  • Lectin
  • Tobacco
  • Teak defoliator