Effect of temperature and mushroom varieties on biology of fungus gnat, Lycoriella auripila (Diptera: Sciaridae)


Some biological parameters of Lycoriella auripila were studied under controlled laboratory conditions (temperatures of 8, 10, 12.5, 15, 20, 22.5, 25, 27 and 30 °C). Glass Petri dishes were inoculated with mycelia of two varieties of Agaricus bisporus (A15 and 737) and two varieties of Pleurotus sp. (Ostreatus and Florida), used as substrate and food source. The optimal temperatures to produce more female progeny, were 15, 22.5 and 25 °C on 737, 20 °C on A15, 20 and 25 °C on Florida and 25 °C on Ostreatus, respectively. The obtained results proved unsuitability of oyster mushroom as a food source for L. auripila. The accuracy of different linear models in fitting the experimental data was determined using comparison of coefficients of determination (R2). Accordingly, the ordinary linear regression in the absence of 27 °C, and Ikemoto and Takai models highly recommended for the description of temperature-dependent development of female of L. auripila on 737 and A15, respectively. Based on the obtained data, 25 °C was recognized as the optimum temperature for development of L. auripila on all mushroom varieties.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. Bergant K, Trdan S (2006) How reliable are thermal constants for insect development when estimated from laboratory experiments? Entomol Exp Appl 120:251–256. https://doi.org/10.1111/j.1570-7458.2006.00433.x

    Article  Google Scholar 

  2. Binns ES (1973) Laboratory rearing, biology and chemical control of the mushroom sciarid Lycoriella auripila (Diptera: Lycoriidae). Ann Appl Biol 73:119–126. https://doi.org/10.1111/j.1744-7348.1973.tb01316.x

    CAS  Article  Google Scholar 

  3. Binns ES (1980) Field and laboratory observation on the substrate of the mushroom fungus gnat Lycoriella auripila. Ann Appl Biol 96:143–152. https://doi.org/10.1111/j.1744-7348.1980.tb02973.x

    Article  Google Scholar 

  4. Briere JF, Pracros P (1998) Comparison of temperature-dependent growth models with the development of Lobesia botrana (Lep. Tortricidae). Environ Entomol 27:94–101. https://doi.org/10.1093/ee/27.1.94

    Article  Google Scholar 

  5. Bryant SR, Shreeve TG (2002) The use of artificial neural networks in ecological analysis: estimating microhabitat temperature. Ecol Entomol 27:424–432. https://doi.org/10.1046/j.1365-2311.2002.00422.x

    Article  Google Scholar 

  6. Campbell A, Frazer BD, Gilbert N, Gutierrez AP, Mackauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:431–438. https://doi.org/10.2307/2402197

    Article  Google Scholar 

  7. Chang ST (1996) Mushroom research and development equality and mutual benefit. In: Royse DJ (ed) Mushroom biology and mushroom products. State University Press, Pennsylvania, pp 1–10

    Google Scholar 

  8. Dent DR, Walton MP (1997) Methods in ecological and agricultural entomology. CAB International, Cambridge

    Google Scholar 

  9. Fan L, Pan H, Soccol AT, Pandey A, Soccol CR (2006) Advances in mushroom research in the last decade. Food Technol Biotechnol 44:303–331

    CAS  Google Scholar 

  10. Fantinou AA, Perdikis DC, Chatzoglou CS (2003) Development of immature stages of Sesamia nonagrioides (Lepidoptera: Noctuidae) under alternating and constant temperatures. Environ Entomol 32:1337–1342. https://doi.org/10.1603/0046-225X-32.6.1337

    Article  Google Scholar 

  11. Fatzinger CW, Dixon WN (1996) Degree-day models for predicting levels of attack by slash pine flower thrips (Thysanoptera: Phlaeothripidae) and the phenology of female strobilus development on slash pine. Environ Entomol 25:727–735. https://doi.org/10.1093/ee/25.4.727

    Article  Google Scholar 

  12. Fletcher JT, Gaze RH (2008) Mushroom Pest and disease control. Manson Publishing, London

    Google Scholar 

  13. Frouz J, Novakova A (2001) A new method for rearing the sciarid fly, Lycoriella ingenua (Diptera: Sciaridae), in the laboratory: possible implications for the study of fly fungal interactions. Pedobiologia 45:329–340. https://doi.org/10.1078/0031-4056-00090

    Article  Google Scholar 

  14. Herrera AM, Dahlsten DD, Tomic-Carruthers N, Carruthers RI (2005) Estimating temperature-dependent developmental rates of Diorhabda elongata (Coleoptera: Chrysomelidae), a biological control agent of saltcedar (Tamarix spp.). Environ Entomol 34:775–784. https://doi.org/10.1603/0046-225X-34.4.775

    Article  Google Scholar 

  15. Ηoněk A (1996) The relationship between thermal constants for insect development: a verification. Acta Soc Zool Bohem 60:115–152

    Google Scholar 

  16. Ikemoto T, Takai K (2000) A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environ Entomol 29:671–682. https://doi.org/10.1603/0046-225X-29.4.671

    Article  Google Scholar 

  17. Jarosik V, Honek A, Dixon AFG (2002) Developmental rate isomorphy in insects and mites. Am Nat 160:497–510. https://doi.org/10.1086/342077

    Article  PubMed  Google Scholar 

  18. Kheradmand K, Kamali K, Fathipour Y, Mohammadi Goltapeh E (2006) Biology and life table parameters of the mushroom pest, Pediculaster fletchmanni (Acari: Siteroptidae), at three constant temperatures. Insect Sci 13:375–380. https://doi.org/10.1111/j.1744-7917.2006.00106.x

    Article  Google Scholar 

  19. Kontodimas DC, Eliopoulos PA, Stathas GJ, Economou LP (2004) Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Col., Coccinelidae) preying on Planococcus citri (Rossi) (Hom., Peseudococcidae), evaluation of a linear and various nonlinear models using specific. Environ Entomol 33:1–11. https://doi.org/10.1603/0046-225X-33.1.1

  20. Lamb RJ (1992) Developmental rate of Acyrthosiphon pisum (Homoptera: Aphididae) at low temperatures: implication for estimating rate parameters for insects. Environ Entomol 21:10–19. https://doi.org/10.1093/ee/21.1.10

    Article  Google Scholar 

  21. Menzel F, Mohrig W (1997) Family Sciaridae. In: Papp L, Darvas B (eds) Manual of Palaearctic Diptera. Herald, Budapest, pp 51–69. https://doi.org/10.1093/ee/5.6.1133

    Chapter  Google Scholar 

  22. Richardson PN, Grewal PS (1991) Comparative assessment of biological (Nematoda: Steinernema feltiae) and chemical methods of control for the mushroom fly, Lycoriella auripila (Diptera: Sciaridae). Biocontrol Sci Tech 1:217–228. https://doi.org/10.1080/09583159109355201

    Article  Google Scholar 

  23. Roy M, Brodeur J, Cloutier C (2002) Relationship between temperature and developmental rate of Stethorus punctillum (Col., Coccinellidae) and its prey Tetranychus mcdaniali (Acarina: Tetranychidae). Environ Entomol 31:177–187. https://doi.org/10.1603/0046-225X-31.1.177

    Article  Google Scholar 

  24. Shimoji Y (2011) Effect of temperature on the development of the west Indian sweet potato weevil, Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) on an artificial diet. Appl Entomol Zool 46:51–54. https://doi.org/10.1007/s13355-010-0006-x

    CAS  Article  Google Scholar 

  25. SPSS (2007) SPSS base 16.0 user’s guide. SPSS Incorporation, Chicago

    Google Scholar 

  26. Steffan WA (1974) Laboratory studies and ecological notes on Hawaiian Sciaridae (Diptera). Pac Insects 16:41–50

    Google Scholar 

  27. Wang B, Ferro DN, Wu J, Wang S (2004) Temperature-dependent development and oviposition behavior of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae), a potential biological control agent for the European corn borer (Lepidoptera: Crambidae). Environ Entomol 33:787–793. https://doi.org/10.1603/0046-225X-33.4.787

  28. White PF (1986) Effects of bendiocarb and diflubenzuron on mushroom cropping. Ann Appl Biol 108:11–20. https://doi.org/10.1111/j.1744-7348.1986.tb01961.x

    CAS  Article  Google Scholar 

  29. Yanik E, Unlu L (2011) Influences of temperature and humidity on the life history parameters and prey consumption of Anthocoris minki Dohrn (Heteroptera: Anthocoridae). Appl Entomol Zool 46:177–184. https://doi.org/10.1007/s13355-011-0029-y

    Article  Google Scholar 

  30. Zamani AA (2001) Identification of injurious dipterean pest of button mushroom (Agaricus bisporus) and study on some of their biological characteristics in Karaj, Iran. M.Sc. Thesis, University of Tarbiat Modares, Iran

Download references


We are grateful to the Department of Plant Protection, Razi University, for supporting this project.

Author information



Corresponding author

Correspondence to Abbas Ali Zamani.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shirvani Farsani, N., Zamani, A.A., Abbasi, S. et al. Effect of temperature and mushroom varieties on biology of fungus gnat, Lycoriella auripila (Diptera: Sciaridae). Biologia 75, 723–731 (2020). https://doi.org/10.2478/s11756-019-00340-w

Download citation


  • Agaricus bisporus
  • Sciaridae
  • Pleurotus sp.
  • Biological parameters
  • Isomorphic rate