Skip to main content

Advertisement

Log in

Key factors in organization of sandy orthopteran assemblages

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Orthopterans are important functional elements of ecosystems, in which several factors influence their distribution and density. Factors related to the vegetation, macro- and microclimate have been intensively investigated, although the role of the bedrock and soil in organization of orthopteran assemblages has not been explored sufficiently. Our results showed that general effects, as (1) dry, warm macro- and microclimate, (2) short vegetation, (3) presence of about 30% bare sand surface, are important habitat factors organizing sandy orthopteran assemblages of the Carpathian Basin too. Further we found that optimal climate and vegetation structure is not sufficient for a high species number of sand-specialists. Local assemblages rich in sand elements are related to sand areas characterised by a proportion of the fine fraction of the soil (= small-fine-dust fractions together) of around 80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Báldi A, Kisbenedek T (1999) Orthopterans in small steppe patches: an investigation for the best-fit model of the species-area curve and evidences for their non-random distribution in the patches. Acta Oecol 20:125–132. https://doi.org/10.1016/S1146-609X(99)80025-3

    Article  Google Scholar 

  • Bartha S, Molnár Z, Fekete G (2008) Patch dynamics in sand grasslands: connecting primary and secondary succession. In: Kovács-Láng E, Molnár E, Kröel-Dulay G, Barabás S (eds) The KISKUN LTER, Long-term ecological research in the Kiskunság. Institute of Ecology and Botany, Vácrátót, pp 37–40

    Google Scholar 

  • Bauer N (2006) Open sandy grasslands of the Bakony region. Studia Bot Hung 37:5–33

    Google Scholar 

  • Bauer N (2014) A Bakony-vidék szárazgyepjei – Sztyeprétek és sziklagyepek osztályozása és növényföldrajzi karaktere (Dry grasslands of the Bakony Region – Classification and phytogeographical character of dry and rocky grasslands). Magyar Természettudományi Múzeum, Budapest

    Google Scholar 

  • Bauer N, Kenyeres Z (2006) Data to the microclimate of some characteristic grassland associations of the Transdanubian Mountains. Acta Bot Hungar 48:9–27. https://doi.org/10.1556/ABot.48.2006.1-2.2

    Article  Google Scholar 

  • Bazelet CS, Samways MJ (2011) Identifying grasshopper bioindicators for habitat quality assessment of ecological networks. Ecol Indic 11:1259–1269. https://doi.org/10.1016/j.ecolind.2011.01.005

    Article  Google Scholar 

  • Beckerman AP (2002) The distribution of Melanoplus femurrubrum: fear and freezing in Connecticut. Oikos 99:131–140. https://doi.org/10.1034/j.1600-0706.2002.990113.x

    Article  Google Scholar 

  • Bonte D, Dekoninck W, Provoost S, Cosijns E, Hoffmann M (2003) Microgeographical distribution of ants (Hymenoptera: Formicidae) in coastal dune grassland and their relation to the soil structure and vegetation. Anim Biol 53:367–377. https://doi.org/10.1163/157075603322556274

    Article  Google Scholar 

  • Borhidi A (1956) Die Steppen und Wiesen im Sandgebiet der Kleinen Ungarischen Tiefebene. Acta Bot Hungar 5:241–273

    Google Scholar 

  • Borhidi A (1961) Klimadiagramme und Klimazonale Karte Ungarns. Annales Universitatis Scientarium Budapestinensis de Rolando Eötvös Nominatae. Sectio Biol 4:21–50

    Google Scholar 

  • Borhidi A, Kevey B, Lendvai G (2012) Plant communities of Hungary. Akadémiai Kiadó, Budapest

    Google Scholar 

  • Chapman RL, Page WW (1978) Embryonic development and water relations of the eggs of Zonocerus variegatus (L.) (Acridoidea: Pyrgmorphidae). Acrida 7:243–252

    Google Scholar 

  • Cigliano MM, Braun H, Eades DC, Otte D (2017) Orthoptera Species File. Version 5.0/5.0. <http://Orthoptera.SpeciesFile.org>. Accessed 25 Oct 2017

  • Cizek L, Hauck D, Pokluda P (2012) Contrasting needs of grassland dwellers: habitat preferences of endangered steppe beetles (Coleoptera). J Insect Conserv 16:281–293. https://doi.org/10.1007/s10841-011-9415-6

    Article  Google Scholar 

  • Cornelisse TM, Hafernik JE (2009) Effects of soil characteristics and human disturbance on tiger beetle oviposition. Ecol Entomol 34:495–503. https://doi.org/10.1111/j.1365-2311.2009.01093.x

    Article  Google Scholar 

  • Crous CJ, Samways MJ, Pryke JS, Stewart A, Bezemer M (2014) Grasshopper assemblage response to surface rockiness in Afro-montane grasslands. Insect Conserv Diver 7:185–194. https://doi.org/10.1111/icad.12044

    Article  Google Scholar 

  • Desender K, Bosmans R (1998) Ground beetles (Coleoptera, Carabidae) on set-aside fields in the Campine region and their importance for nature conservation in Flanders (Belgium). Biodivers Conserv 7:1485–1493. https://doi.org/10.1023/A:1008813102410

    Article  Google Scholar 

  • Devetak D, Arnett AE (2015) Preference of antlion and wormlion larvae (Neuroptera: Myrmeleontidae; Diptera: Vermileonidae) for substrates according to substrate particle sizes. Eur J Entomol 112:500–509. https://doi.org/10.14411/eje.2015.052

    Article  Google Scholar 

  • Dövényi Z (ed) (2010) Magyarország kistájainak katasztere. [Cadastre of the Hungarian Microregions]. MTA Földrajztudományi Kutatóintézet, Budapest

    Google Scholar 

  • Fekete G (1992) The holistic view of succession reconsidered. Coenoses 7:21–29

    Google Scholar 

  • Fekete G, Kun A, Molnár Z (1999) Chorológiai gradiensek a Duna-Tisza közi erdei flórában. (Chorological gradients of the forest flora at the Danube-Tisza mid region). Kitaibelia 4:343–346

    Google Scholar 

  • Fekete G, Molnár Z, Kun A, Botta-Dukát Z (2002) On the structure of the Pannonian forest steppe: grasslands on sand. Acta Zool Acad Sci Hung 48(Suppl):137–150

    Google Scholar 

  • Fielding DJ (2011) Oviposition site selection by the grasshoppers Melanoplus borealis and M. sanguinipes (Orthoptera: Acrididae). J Orthop Res 20:75–80. https://doi.org/10.1665/034.020.0107

    Article  Google Scholar 

  • Fielding DJ, Brusven MA (1993) Grasshopper (Orthoptera: Acrididae) community composition and ecological Distrubance on southern Idaho rangeland. Environ Entomol 22:71–81. https://doi.org/10.1093/ee/22.1.71

    Article  Google Scholar 

  • Gardiner T, Pye M, Field R, Hill J (2002) The influence of sward height and vegetation composition in determining the habitat preferences of three Chorthippus species (Orthoptera: Acrididae) in Chelmsford, Essex, UK. J Orthop Res 11:207–213. https://doi.org/10.1665/1082-6467(2002)011[0207:TIOSHA]2.0.CO;2

  • Gee GW, Or D (2002) Particle-size analysis. In: Dane JH, Topp GC (eds) Methods of soil analysis, Part 4. Physical methods. Soil Science Society of America, Madison, pp 255–293

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Harz K (1969) Die Orthopteren Europas / the Orthoptera of Europe I. Series Ent. 5. Springer, The Hague

    Book  Google Scholar 

  • Harz K (1975) Die Orthopteren Europas / the Orthoptera of Europe II. Series Ent. 11. Springer, The Hague

    Book  Google Scholar 

  • Herrmann DL, Ko AE, Bhatt S, Jannot JE, Juliano SA (2010) Geographic variation in size and oviposition depths of Romalea microptera (Orthoptera: Acrididae) is associated with different soil conditions. Ann Entomol Soc Am 103:227–235. https://doi.org/10.1603/AN09131

    Article  Google Scholar 

  • Holm HT (1892) The psammophilous flora of Denmark. Bot Gaz 17:220–222

    Article  Google Scholar 

  • Horváth R, Magura T, Cs S, Eichardt J, Tóthmérész B (2013) Large and least isolated fragments preserve habitat specialist spiders best in dry sandy grasslands in Hungary. Biodivers Conserv 22:2139–2150. https://doi.org/10.1007/s10531-013-0439-y

    Article  Google Scholar 

  • Ingrisch S (1985) Effect of hibernation lenght on termination of diapause in European Tettigoniidae (Insecta: Orthoptera). Oecologia 65:376–381. https://doi.org/10.1007/BF00378912

    Article  PubMed  Google Scholar 

  • Ingrisch S (1988) Wasseraufnahme und Trockenresistenz der Eier europäischer Laubheuschrecken (Orthoptera: Tettigoniidae). Zoologische Jahrbücher Abteilung für Anatomie und Ontogenie der Tiere Abteilung für Anatomie und Ontogenie der Tiere 92:117–170

  • Ingrisch S, Köhler G (1998) Die Heuschrecken Mitteleuropas. Die neue Brehm-Bücherei, Magdeburg

    Google Scholar 

  • Ji R, Li DM, Xie BY, Li Z, Meng DL (2006) Spatial distribution of oriental migratory locust (Orthoptera: Acrididae) egg pod populations: implications for site-specific pest management. Environ Entomol 35:1244–1248. https://doi.org/10.1603/0046-225X(2006)35[1244:SDOOML]2.0.CO;2

  • Johnson DL (1989) Spatial analysis of the relationship of grasshopper outbreaks to soil classification. In: McDonald L, Manly B, Lockwood J, Logan J (eds) Estimation and analysis of insect populations. Lecture Notes in Statistics 55, pp 347–359

  • Kemp WP, Sanchez NE (1987) Differences in post diapause thermal requirements for eggs of two rangeland grasshoppers. Can Entomol 119:653–661. https://doi.org/10.4039/Ent119653-7

    Article  Google Scholar 

  • Kenyeres Z, Bauer N, Rácz IA (2014) Local and global factors in organization of Central-European orthopteran assemblages. Russ J Ecol 45:375–383. https://doi.org/10.1134/S1067413614050075

  • Kerner A (1863) Das Pflanzenleben der Donauländer. Verlag der Wagner’schen Universitäts-Buchhandlung, Innsbruck

    Google Scholar 

  • Kovács-Láng E, Kertész M, Kröel-Dulay Gy, Mika J, Rédei T, Rajkai K, Hahn I, Bartha S (1999) Effects of a climate gradient on sand vegetation. In: Kovács-Láng E, Molnár E, Kröel-Dulay Gy, Barabás S (eds) Long Term Ecological Research in the Kiskunság, Hungary. Institute of Ecology and Botany of the Hungarian Academy of Sciences, Vácrátót, pp 30–32

    Google Scholar 

  • Kovács-Láng E, Kröel-Dulay G, Kertész M, Fekete G, Bartha S, Mlka J, Dobi-Wantuch I, Rédei T, Rajkai KG, Hahn I (2000) Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change. Phytocoenologia 30:385–407

    Article  Google Scholar 

  • Krištín A, Kaňuch P, Sárossy M (2004) Grasshoppers and crickets (Orthoptera) and mantids (Mantodea) of sand dunes in the Danube lowland (S Slovakia). Linzer Biol Beitr 36:273–286

    Google Scholar 

  • Krištín A, Kanuch P, Fabriciusova V, Gavlas V (2009) Responses on habitat and global change of some Mediterranean orthopteran species occurring in blown sands in Central Europe. In: 10th International Congress of Orthopterology, Metaleptea, Special Conference Issue, Orthopterists’ Society and Akdeniz University, p 42

  • Krištín A, Balla M, Fabriciusová V, Hrúz V, Kaňuch P (2011) Orthoptera and Mantodea in fragments of seminatural habitats in lowlands of SE Slovakia and SW Transcarpathian Ukraine. Articulata 26:109–121

    Google Scholar 

  • Ljungberg H (2002) Important habitats for red-listed ground beetles in Sweden. Entomol Tidskr 123:167–185

    Google Scholar 

  • Lockwood JA, Hong-Chang L, Dodd JL, Williams SE (1994) Comparison of grasshopper (Orthoptera: Acrididae) ecology on the grasslands of the Asian steppe in Inner Mongolia and the Great Plains of North America. J Orthop Res (2):4–14. https://doi.org/10.2307/3503601

  • Meats A (1970) The relation of water availability and osmotic gradients to egg development in the locusts Locusta migratoria migratorioides Reiche & Fairmaire and Schistocerca gregaria Forskål. Proc R Entomol Soc Lond 45:73–79. https://doi.org/10.1111/j.1365-3032.1970.tb00702.x

    Article  Google Scholar 

  • Metzler EH (2014) The remarkable endemism of moths at White Sands National Monument in New Mexico, USA, with special emphasis on Gelechioidea (Lepidoptera). J Asia Pac Biodivers 7:1–5. https://doi.org/10.1016/j.japb.2014.02.001

    Article  Google Scholar 

  • Moriarty F (1969) Water uptake and embryonic development in eggs of Chorthippus brunneus Thunberg (Saltatoria: Acrididae). J Exp Biol 50:327–333

    Google Scholar 

  • Nerney NJ, Hamilton AG (1969) Effects of rainfall on range forage and populations of grasshoppers, San Carlos apache Indian reservation. Ariz J Econ Entomol 62:329–333. https://doi.org/10.1093/jee/62.2.329

    Article  Google Scholar 

  • Ni SX, Wang JC, Jiang JJ, Zha Y (2007) Rangeland grasshoppers in relation to soils in the Qinghai Lake region, China. Pedosphere 17:84–89. https://doi.org/10.1016/S1002-0160(07)60011-3

    Article  Google Scholar 

  • Ödman AM, Mårtensson LM, Sjöholm C, Olsson PA (2011) Immediate responses in soil chemistry, vegetation and ground beetles to soil perturbation when implemented as a restoration measure in decalcified sandy grassland. Biodivers Conserv 20:3039–3058. https://doi.org/10.1007/s10531-011-0108-y

    Article  Google Scholar 

  • Olsson PA, Sjöholm C, Ödman AM (2014) Soil disturbance favours threatened beetle species in sandy grasslands. J Insect Conserv 18:827–835. https://doi.org/10.1007/s10841-014-9689-6

    Article  Google Scholar 

  • Quinn MA, Kepner RL, Walgenbach DD, Bohls RA, Pooler PD, Foster R, Reuter N, Swain JL (1991) Habitat characteristics and grasshopper community dynamics on mixed-grass rangeland. Can Entomol 123:89–105. https://doi.org/10.4039/Ent12389-1

    Article  Google Scholar 

  • Rácz I (1998) Biogeographical survey of the Orthoptera Fauna in central part of the Carpathian Basin (Hungary): Fauna types and community types. Articulata 13:53–69

    Google Scholar 

  • Reynolds HL, Haubensak KA (2008) Soil fertility, heterogeneity, and microbes: towards an integrated understanding of grassland structure and dynamics. Appl Veg Sci 12:33–44. https://doi.org/10.1111/j.1654-109X.2009.01020.x

    Article  Google Scholar 

  • Samways MJ (1997) Conservation biology of Orthoptera. In: Gangwere SK, Muralirangan MC, Muralirangan M (eds) Bionomics of grasshoppers, Katydids and their Kin. CAB International, Wallingford, pp 481–496

    Google Scholar 

  • Schell SP, Lockwood JA (1997) Spatial analysis of ecological factors related to grasshopper population dynamics in Wyoming. Environ Entomol 26:1343–1353

    Article  Google Scholar 

  • Şenlikci A, Doğu M, Eren E, Çetinkaya E, Karadağ S (2015) Pressure calcimeter as a simple method for measuring the CaCO3 content of soil and comparison with Scheibler calcimeter. Soil-Water J Spec Issue:24–28

  • Sharma AK (1984) Observations on the mating and oviposition behaviour of Chrotogonus trachypterus blanch. (Orthoptera: Acrididae) in relation to different types of soil and moisture levels. Bull Pure Appl Sci 3A:76–79

    Google Scholar 

  • Spalding VM (1909) Distribution and movements of desert plants. Carnegie Institution of Washington Publication 113, Washington DC

  • Stauffer TW, Whitman DW (2007) Divergent oviposition behaviors in a desert vs. a marsh grasshopper. J Orthop Res 16:103–114. https://doi.org/10.1665/1082-6467(2007)16[103:DOBIAD]2.0.CO;2

  • Stebaev IV, Nikitina SI (1976) Behaviourial patterns of different life forms of grasshoppers from steppes and semideserts of Tuva. Zool Zh 55:715–720

    Google Scholar 

  • Ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: Software for Canonical Community Ordination (version 4.5). Biometris, Wageningen

  • Weiss N, Zucchi H, Hochkirch A (2013) The effects of grassland management and aspect on Orthoptera diversity and abundance: site conditions are as important as management. Biodivers Conserv 22:2167–2178. https://doi.org/10.1007/s10531-012-0398-8

    Article  Google Scholar 

  • Willott SJ (1997) Thermoregulation in four species of British grasshoppers (Orthoptera: Acrididae). Funct Ecol 11:705–713. https://doi.org/10.1046/j.1365-2435.1997.00135.x

    Article  Google Scholar 

  • Willott SJ, Hassall M (1998) Life-history responses of British grasshoppers (Orthoptera: Acrididae) to temperature change. Funct Ecol 12:232–241. https://doi.org/10.1046/j.1365-2435.1998.00180.x

    Article  Google Scholar 

  • Woodman JD (2017) Effects of substrate salinity on oviposition, embryonic development and survival in the Australian plague locust, Chortoicetes terminifera (Walker). J Insect Physiol 96:9–13. https://doi.org/10.1016/j.jinsphys.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  • Wünsch Y, Schirmel J, Fartmann T (2011) Conservation management of coastal dunes for Orthoptera has to consider oviposition and nymphal preferences. J Insect Conserv 16:1–10. https://doi.org/10.1007/s10841-011-9436-1

    Article  Google Scholar 

  • Zuo XA, Knops JMH, Zhao XY, Zhao HL, Zhang TH, Li YQ, Guo YR (2012) Indirect drivers of plant diversity-productivity relationship in semiarid sandy grasslands. Biogeosciences 9:1277–1289. https://doi.org/10.5194/bg-9-1277-2012

    Article  Google Scholar 

Download references

Acknowledgments

Szilard Szabo was financed by the Higher Education Institutional Excellence Programme of the Ministry of Human Capacities in Hungary, within the framework of thematic programme no. 4 of the University of Debrecen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Kenyeres.

Ethics declarations

Ethical approval

Studies were carried out with approval of Fertő-Hanság, Kiskunság, Duna-Ipoly and Balaton Uplands National Park Directorates.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenyeres, Z., Szabó, S., Szinetár, C. et al. Key factors in organization of sandy orthopteran assemblages. Biologia 74, 835–850 (2019). https://doi.org/10.2478/s11756-019-00217-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-019-00217-y

Keywords

Navigation