, Volume 73, Issue 4, pp 319–332 | Cite as

Habitat conditions, stage structure and vegetation associations of geographically isolated subalpine populations of Salix lapponum L. (Salicaceae) in the Krkonoše Mts (Czech Republic)

  • Michal HronešEmail author
  • Soňa Hrachová Macurová
  • Zbyněk Hradílek
  • Petr Hekera
  • Martin Duchoslav
Original Article


Shrub communities are important components of the subalpine vegetation. We focused on habitat conditions and stage structure (flowering and non-reproducing individuals) of stands of the endangered Salix lapponum in the Krkonoše Mts, Czech Republic. Habitat conditions were determined using soil sample analyses and Ellenberg indicator values (EIVs) derived from fine-scale (1 × 1 m) vegetation plots. The fine-scale plots were compared with coarse-scale relevés with the occurrence of S. lapponum acquired from the Czech National Phytosociological Database. We found that S. lapponum grows on nutrient-poor, acidic soils with high relative water contents, high amounts of total nitrogen, low amounts of phosphorus, moderate amounts of magnesium and low to moderate amounts of calcium. The overall proportion of non-reproducing individuals was 35.2%, but strong variations were observed among populations (0–100%). Co-occurring species and EIVs data indicated that flowering individuals are relatively more common in humid, nutrient-rich and warmer microhabitats than non-reproducing ones. Well-developed (“typical”) stands of S. lapponum with a dominance of flowering individuals occur along alpine springs, streams and in glacial cirques (= association Salicetum lapponum Zlatník 1928), but S. lapponum also grows along transitional mires and peat bogs and in subalpine grasslands. Coarse-scale relevés were similar to “typical” stands of S. lapponum at the fine scale but were differentiated from them by high frequencies of several, mainly broad-leaved forbs and herbs typical of moist to wet and fertile soils. Threats to S. lapponum and the future prospects of its stands in the Krkonoše Mts are briefly discussed.


Alpine scrub Krkonoše Mts Flowering frequency Habitat conditions Soil conditions Vegetation composition Willow 



We are grateful to workers of the Krkonoše National Park administration, namely J. Zahradníková and D. Gluzová, for help with obtaining research permit and field work, respectively. L. Čáp helped with nitrogen analysis. I. Knollová and M. Chytrý (Brno) kindly provided access to the Czech national phytosociological database. Comments and corrections of two anonymous reviewers are greatly acknowledged. Field work was carried out under research permits no 8/2010, 112/2012 and 113/2012. MH, SHM, ZH & MD were supported by the project no. IGA PrF-2018-001 from the Internal Grant Agency of the Palacký University.

Supplementary material

11756_2018_51_MOESM1_ESM.docx (25 kb)
ESM 1 (DOCX 25 kb)


  1. Alliende MC, Harper JL (1989) Demographic studies of a dioecious tree. I. Colonization, sex and age structure of a population of Salix cinerea. J Ecol 77:1029–1047. CrossRefGoogle Scholar
  2. Anthelme F, Michalet R, Barbaro L, Brun JJ (2003) Environmental and spatial influences of shrub cover (Alnus viridis DC.) on vegetation diversity at the upper treeline in the inner western Alps. Arct Antarct Alp Res 35:48–55.[0048:EASIOS]2.0.CO;2Google Scholar
  3. Braun-Blanquet J (1964) Pflanzensoziologie: Grundzüge der Vegetationskunde. Springer, New YorkCrossRefGoogle Scholar
  4. Chaloupský J (ed) (1989) Geologie Krkonoš a Jizerských hor. Ústřední ústav geologický, Praha, 288 ppGoogle Scholar
  5. Chlebicki A (1999) Grzyby zebrane na gnidoszu sudeckim (Pedicularis sudetica ssp. sudetica), skalnicy snieznej (Saxifraga nivalis) i wierzbie laponskiej (Salix lapponum) w Karkonoszach. Przyroda Sudet Zachodnich 2:15–20Google Scholar
  6. Chmelař J (1972) Poznámky k československým druhům rodu Salix. Část II. Druhy vrb vyšších poloh. Čas Slez Muz, ser. C 11:1–16Google Scholar
  7. Chmelař J, Koblížek J (1990) Salicaceae Mirbel – vrbovité. In: Hejný S, Slavík B (eds) Květena České republiky 2. Academia, Praha, pp 458–495Google Scholar
  8. Chmelař J, Meusel W (1979) Die Weiden Europas. Die Neue Brehm-Bücherei, Wittenberg LutherstadtGoogle Scholar
  9. Chytrý M, Rafajová M (2003) Czech National Phytosociological Database: basic statistics of the available vegetation plot-data. Preslia 75:1–15Google Scholar
  10. Chytrý M, Tichý L, Holt J, Botta-Dukát Z (2002) Determination of diagnostic species with statistical fidelity measures. J Veg Sci 13:79–90. CrossRefGoogle Scholar
  11. Dahl E (1956) Rondane: mountain vegetation in South Norway and its relation to the environment. Aschehough, OsloGoogle Scholar
  12. Danton P, Baffray M (1995) Inventaire des plantes protégées en France. Nathan, ParisGoogle Scholar
  13. de Foucault B (2012) Contribution au prodrome des végétations de France: les Betulo carpaticae – Alnetea viridis Rejmánek in Huml, Lepš, Prach & Rejmánek 1979. J Bot Soc Bot France 60:47–68Google Scholar
  14. de Witte LC, Armbruster GFJ, Gielly L, Taberlet P, Stöcklin J (2012) AFLP markers reveal high clonal diversity and extreme longevity in four key arctic-alpine species. Mol Ecol 21:1081–1109. CrossRefPubMedGoogle Scholar
  15. Dengler J (2003) Entwicklung und Bewertung neuer Ansätze in der Pflanzensoziologie unter besonderer Berücksichtigung der Vegetationsklassifikation. Arch Naturwiss Diss 14. Galunder, Nümbrecht, 297 pp.Google Scholar
  16. Dierßen K (1996) Vegetation Nordeuropas. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  17. Dona AJ, Galen C (2007) Nurse effects of alpine willows (Salix) enhance over-winter survival at the upper range limit of fireweed, Chamerion angustifolium. Arct Antarct Alp Res 39:57–64.[57:NEOAWS]2.0.CO;2Google Scholar
  18. Ellenberg H, Weber HE, Düll R, Wirth W, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Verlag Erich Goltze, GöttingenGoogle Scholar
  19. Elven R, Karlsson T (2000) Salicaceae Mirbel. In: Jonsell B (ed) Flora Nordica 1. Bergius Foundation, Stockholm, pp 118–195Google Scholar
  20. Fijałkowski D (1958) Badania nad rozmieszczeniem i ekologią wierzby lapońskiej (Salix lapponum) na Pojezierzu Łęczyńsko-Włodawskim. Fragm Florist Geobot Pol 3:89–103Google Scholar
  21. Grabowski H (1843) Flora von Ober-Schlesien und dem Gesenke: Mit Berücksichtigung der geognostischen, Boden- und Höhen-Verhältnisse. Gosohorsky, BreslauGoogle Scholar
  22. Grulich V (2012) Red list of vascular plants of the Czech Republic: 3rd edition. Preslia 84:631–645Google Scholar
  23. Hadač E, Váňa J (1967) Plant communities of mires in the western part of the Krkonoše Mountains, Czechoslovakia. Folia Geobot Phytotax 2:213–254. CrossRefGoogle Scholar
  24. Hájek M, Hájková P (2011) Scheuchzerio palustris-Caricetea nigrae Tüxen 1937. In: Chytrý M (ed) Vegetace České republiky 3. Academia, Praha, pp 615–619Google Scholar
  25. Hédl R (2007) Is sampling subjectivity a distorting factor in surveys for vegetation diversity? Folia Geobot 42:191–198. CrossRefGoogle Scholar
  26. Hennekens SM, Schaminée JHJ (2001) TURBOVEG, a comprehensive data base management system for vegetation data. J Veg Sci 12:589–591. CrossRefGoogle Scholar
  27. Hill MO, Mountford JO, Roy DB, Bunce RGH (1999) Ellenberg's indicator values for British plants. ECOFACT volume 2 technical annex. Institute of Terrestrial Ecology, HuntingdonGoogle Scholar
  28. Hintze J (2013) NCSS 9. NCSS, LLC. Kaysville, Utah.
  29. Holtmeier F, Broll G (1992) The influence of tree islands and microtopography on pedoecological conditions in the forest-alpine tundra eco-tone on Niwot ridge, Colorado front range, U.S.A. Arct Alp Res 24:216–228. CrossRefGoogle Scholar
  30. Hroneš M, Trávníček B (2018): Typification of names related to Salix lapponum (Salicaceae) and its hybrids published by I. F. Tausch. Nord J Bot 36: njb-01457.
  31. Hroneš M, Nývltová V, Brandová B, Ševčík J, Dančák M, Vašut RJ (2014) Vysokohorské vrby (Salix) sudetských pohoří České republiky - rozšíření a současný stav populací. Zpr Čes Bot Spol 49:29–47Google Scholar
  32. Huml O, Lepš J, Prach K, Rejmánek M (1979) Zur Kenntnis der Quellfluren, alpinen Hochstaudenfluren und Gebüsche des Făgăraş-Gebirges in den Südkarpaten. Preslia 51:35–45Google Scholar
  33. Kliment J, Šibík J, Šibíková I, Jarolímek I, Dúbravcová Z, Uhlířová J (2010) High-altitude vegetation of the Western Carpathians — a syntaxonomical review. Biologia 5:965–989. CrossRefGoogle Scholar
  34. Kočí M (2010) Subalpine tall-forb and deciduous-shrub vegetation. In: Chytrý M (ed) Vegetace České republiky 1. Academia, Praha, pp 91–131Google Scholar
  35. Kołos A, Chmielewska-Nowik E (2007) Struktura populacji Salix lapponum (Salicaceae) na izolowanych stanowiskach w Puszczy Knyszyńskiej i Puszczy Białowieskiej. Fragm Florist Geobot Pol 14:123–137Google Scholar
  36. Kołos A, Wołkowycki D, Banaszuk P, Kamocki A (2015) Protection of relic plant species at the limit of their geographical range: response of Salix lapponum to competitor removal. Ann Bot Fenn 52:303–314. CrossRefGoogle Scholar
  37. Macko S (1952) Zespoły roślinne w Karkonoszach. Część I. Karkonosze wschodnie. Acta Soc Bot Pol 21:591–684CrossRefGoogle Scholar
  38. Mardon DK (1990) Conservation of montane willow scrub in Scotland. Trans Bot R Soc Edinburgh 45:427–436CrossRefGoogle Scholar
  39. Matějka K, Vacek S, Podrázský S (2010) Development of forest soils in the Krkonoše Mts. In the period 1980–2009. J For Sci 56:485–504CrossRefGoogle Scholar
  40. Matuszkiewicz W, Matuszkiewicz A (1975) Mapa zbiorowisk roślinnych Karkonoskiego Parku Narodowego. Ochr Przyr 40:45–112Google Scholar
  41. McVean DN, Ratcliffe DA (1962) Plant communities of the Scottish highlands. A study of Scottish mountain, moorland and forest vegetation. Monographs of the nature conservancy 1. H.M. Stationery Office, LondonGoogle Scholar
  42. Mehlich A (1978) New extractant for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese and zinc. Commun Soil Sci Plan 9:477–492. CrossRefGoogle Scholar
  43. Mirek Z, Zarzycki K, Wojewoda W, Szeląg Z (2006) Czerwona lista roślin i grzybów Polski. W. Szafer Institute of Botany, Polish Academy of Sciences, CracowGoogle Scholar
  44. Mucina L, Bültmann H, Dierßen K, Theurillat J-P, Raus T et al (2016) Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl Veg Sci 19:3–264. CrossRefGoogle Scholar
  45. Müllerová J, Vítková M, Vítek O (2011) The impacts of road and walking trails upon adjacent vegetation: effects of road building materials on species composition in a nutrient poor environment. Sci Tot Env 409:3839–3849. CrossRefGoogle Scholar
  46. Naito Y, Konuma A, Iwata H, Suyama Y, Seiwa K, Okuda T, Lee SL, Muhammad N, Tsumura Y (2005) Selfing and inbreeding depression in seeds and seedlings of Neobalanocarpus heimii (Dipterocarpaceae). J Plant Res 118:423–430. CrossRefPubMedGoogle Scholar
  47. Otýpková Z, Chytrý M (2006) Effects of plot size on the ordination of vegetation samples. J Veg Sci 17:465–472. CrossRefGoogle Scholar
  48. Pogorzelec M (2003) Charakterystyka populacji i stanowisk Salix lapponum L. w Poleskim Parku Narodowym. Acta Agrophysica 1:145–151Google Scholar
  49. Pogorzelec M (2008) Influence of chosen environmental abiotic factors on Salix lapponum L. populations in Polesie Lubelskie region. Pol J Env Stud 17:581–586Google Scholar
  50. Pogorzelec M (2009) Downy willow (Salix lapponum L.) as a component of different phytocoenoses in Polesie National Park. Acta Agrobot 62:107–116. CrossRefGoogle Scholar
  51. Pogorzelec M (2010) Salix lapponum L. (downy willow) in stands under anthropopressure in the Łęczna-Włodawa Lakeland. Acta Agrobot 63:47–53. CrossRefGoogle Scholar
  52. Pogorzelec M, Bronowicka-Mielniczuk U, Banach B, Szcurowska A, Serafin A (2014a) Relict boreal willows (Salix lapponum and Salix myrtilloides) as an element of phytocoenoses overgrowing the water bodies in Eastern Poland. Appl Ecol Env Res 12:441–456CrossRefGoogle Scholar
  53. Pogorzelec M, Głębocka K, Hawrylak-Nowak B, Parzymies M (2014b) Reproduction and diversity of the endangered Salix lapponum L. populations in Eastern Poland. Turk J Bot 38:1239–1247. CrossRefGoogle Scholar
  54. Pokorná H (1978) Studie vlivu matečných hornin na rostlinstvo Krkonoš. Opera Concortica 15:50–85Google Scholar
  55. Pornon A, Escaravage N, Thomas P, Taberlet P (2000) Dynamics of genotypic structure in clonal Rhododendron ferrugineum (Ericaceae) populations. Mol Ecol 9:1099–1111. CrossRefPubMedGoogle Scholar
  56. Pusz W, Urbaniak J (2017) Foliar diseases of willows (Salix spp.) in selected locations of the Karkonosze Mts (the Giant Mts). Eur J Plant Pathol 148:45–51CrossRefGoogle Scholar
  57. Rodwell JS (1991) British plant communities: volume 1, woodlands and scrub. Cambridge University Press, CambridgeGoogle Scholar
  58. Roleček J, Tichý L, Zelený D, Chytrý M (2009) Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. J Veg Sci 20:596–602. CrossRefGoogle Scholar
  59. Scott ML, Friedmann JM, Auble GT (1996) fluvial process and the establishment of bottomland trees. Geomorphology 14:327–339. CrossRefGoogle Scholar
  60. Scottish Montane Willow Research Group (2005) Biodiversity: taxonomy, genetics and ecology of sub-arctic willow scrub. Royal Botanic Garden, EdinburghGoogle Scholar
  61. Semelová V, Hejcman M, Pavlů V, Vacek S, Podrázský V (2008) The grass garden in the Giant Mts (Czech Republic): residual effect of long-term fertilization after 62 years. Agric Ecosyst Environ 123:337–342. CrossRefGoogle Scholar
  62. Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Evol Syst 40:415–436CrossRefGoogle Scholar
  63. Shaw RF, Iason GR, Pakeman RJ, Young MR (2010) Regeneration of Salix arbuscula and Salix lapponum within a large mammal exclosure: the impacts of microsite and herbivory. Restor Ecol 18:1–9. CrossRefGoogle Scholar
  64. Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using Canoco 5. Cambridge University Press, 362 ppGoogle Scholar
  65. Speed JDM, Austrheim G, Hester AJ, Mysterud A (2013) The response of alpine Salix shrubs to long-term browsing varies with elevation and herbivore density. Arct Antarct Alp Res 45:584–593. CrossRefGoogle Scholar
  66. Stamati K, Hollingsworth PM, Russell K (2007) Patterns of clonal diversity in three species of sub-arctic willow (Salix lanata, Salix lapponum and Salix herbacea). Plant Sys Evol 269:75–88. CrossRefGoogle Scholar
  67. Takkis K, Pärtel M, Saal L, Helm A (2013) Extinction debt in a common grassland species: immediate and delayed responses of plant and population fitness. Plant Ecol 214:953–963. CrossRefGoogle Scholar
  68. Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453. CrossRefGoogle Scholar
  69. Totland Ø, Esaete J (2002) Effects of willow canopies on plant species performance in a low-alpine community. Plant Ecol 161:157–166. CrossRefGoogle Scholar
  70. Urban D, Wawer M (2001) Salix lapponum L. i S. myrtilloides L. w okolicach Sobiboru na Pojezierzu Łęczyńsko-Włodawskim. Ann UMCS 56:83–93Google Scholar
  71. Wesche K, Ronnenberg K, Hensen I (2005) Lack of sexual reproduction within mountain steppe populations of the clonal shrub Juniperus sabina L. in semi-arid southern Mongolia. J Arid Environ 63:390–405. CrossRefGoogle Scholar
  72. Zarzycki K, Korzeniak U (2002) Ecological indicator values of vascular plants of Poland. Institut Botaniki PAN, KrakówGoogle Scholar
  73. Zeidler M, Duchoslav M, Banaš M, Lešková M (2012) Impacts of introduced dwarf pine (Pinus mugo) on the diversity and composition of alpine vegetation. Community Ecol 13:213–220CrossRefGoogle Scholar

Copyright information

© Plant Science and Biodiversity Centre, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of BotanyPalacký UniversityOlomoucCzech Republic
  2. 2.Department of Ecology and Environmental SciencesPalacký UniversityOlomoucCzech Republic

Personalised recommendations