, Volume 73, Issue 2, pp 121–128 | Cite as

Genome size and ploidy level among wild and cultivated Prunus taxa in Slovakia

  • Michal Žabka
  • Ľuba Ďurišová
  • Pavol EliášJrEmail author
  • Tibor Baranec
Original Article


2C DNA content and ploidy level variation of Prunus spinosa and closely related taxa together with Prunus domestica L. and Prunus insititia L. was studied in Slovakia. The aim of the study was to define genome sizes and find differences between closely related taxa within Prunus spinosa sensu lato mentioned in previous works. According to our results, investigated taxa can be divided into three groups according to ploidy level: Prunus spinosa, Prunus dasyphylla, Prunus ×fruticans, Prunus ×dominii and Prunus ×schurii are tetraploids, Prunus ×fechtneri is pentaploid, and P. domestica and P. insititia are hexaploids. Genome size differences within tetraploid taxa were relatively small (Prunus spinosa: 1.40 ± 0.02, P. ×domini: 1.44 ± 0.01, P. ×fruticans: 1.48 ± 0.02, P. ×schurii: 1.44 ± 0.02), but statistically significant. Although further research is needed, it seems that the concept of several taxa as product of hybridization between P. spinosa and cultivated plum species has been supported by our study.


Prunus spinosa agg. Flow cytometry Genome size Ploidy level Slovakia 



We are indebted for two anonymous reviewers for valuable comments to the manuscript. Scott Burgess kindly improved our English. This work was supported by Research Center AgroBioTech built in accordance with the project Building Research Centre „AgroBioTech” ITMS 26220220180 and by grant VEGA no. 1/0083/16.


  1. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:208–218CrossRefGoogle Scholar
  2. Ascherson P, Graebner P (1906) Synopsis der mitteleuropâischen Flora 6/2. Engelmann, Leipzig, pp 160Google Scholar
  3. Baack EJ (2004) Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus : Ranunculaceae). Am J Bot 91:1783–1788CrossRefPubMedGoogle Scholar
  4. Baranec T (1990) Nové spontánne krížence rodu Prunus L. pre ČeskoSlovensko. Dendrol Sděl 34:38–40Google Scholar
  5. Baranec T, Žgančíková I, Muráňová K (2011) Predbežné výsledky štúdia taxonomickej a morfologickej variability rodu Prunus L. v biokoridoroch poľnohospodárskej krajiny na JZ Slovensku. Acta Pruhoniciana 99:97–101Google Scholar
  6. Ben Tamarzizt H, Walker D, Ben Mustapha S, Abdallah D, Baraket G, Salhi Hannachi A, Zehdi Azzouzi S (2015) DNA variation and polymorphism in Tunisian plum species (Prunus spp.): contribution of flow cytometry and molecular markers. Genet Mol Res 14:18034–18046CrossRefPubMedGoogle Scholar
  7. Bertová L (ed) (1992) Flóra Slovenska I V/3. VEDA, Bratislava, p 498Google Scholar
  8. Bureš P, Wang YF, Tichý L, Bartoš J (2003) Polypodium × mantoniae and new localities of P. interjectum in the Czech Republic confirmed using flow cytometry. Preslia 75:293–310Google Scholar
  9. Bureš P, Wang YF, Horová L, Suda J (2004) Genome Size Variation in Central European Species of Cirsium (Compositae) and their Natural Hybrids. Ann Bot 94:353–363CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bouhadida M, Martín JP, Eremin G, Pinochet J, Gogorcena Y (2007) Chloroplast DNA diversity in Prunus and its implication on genetic relationships. J Amer Soc Hort Sci 132:670–679Google Scholar
  11. Čelakovský LJ (1879) Analytická květena Čech, Moravy a rakouského Slezska. F Tempský, Praha, pp 412Google Scholar
  12. Coast AM (1965) Garden shrubs and their histories. University of Michigan, Dutton, p 410Google Scholar
  13. Darlington CD, Ammal-Janaki EK (1945) Chromosome Atlas of Flowering Plants. Allen & Unwin LTD, London, p 149Google Scholar
  14. Darlington CD, Wylie AP (1955) Chromosome atlas of flowering plants. George Allen and Unwin Ltd., London, p 519Google Scholar
  15. Das B, Ahmed N, Singh P (2011) Prunus diversity – early and present development: A review. Int J Biodivers Conserv 3:721–734Google Scholar
  16. Depypere L, Chaerle P, Vander MK, Goethebeur P (2007) Stony endocarp dimension and shape variation in Prunus Section Prunus. Ann Bot 100:1585–1597CrossRefPubMedPubMedCentralGoogle Scholar
  17. Depypere L, Chaerle P, Breyne P, Vander MK, Goetghebeur P (2009) A combined morphometric and AFLP based diversity study challenges the taxonomy of the European members of the complex Prunus L. section Prunus. Plant Syst Evol 279:219–231CrossRefGoogle Scholar
  18. Dickson EE, Arumuganathan K, Kresovich S, Doyle JJ (1992) Nuclear DNA content variation within the Rosaceae. Amer J Bot 79:1081–1086CrossRefGoogle Scholar
  19. Doležel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using highresolution flow cytometry. Cytometry 19:103–106CrossRefPubMedGoogle Scholar
  20. Doležel J, Bartoš J (2005) Plant DNA Flow Cytometry and Estimation of Nuclear Genome Size. Ann Bot 95:99–110CrossRefPubMedPubMedCentralGoogle Scholar
  21. Doležel J, Doleželová M, Novák FJ (1994) Flow cytometric estimation on nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Plant 36:351–357CrossRefGoogle Scholar
  22. Doležel J, Greilhuber J, Suda J (2007) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim, pp 479CrossRefGoogle Scholar
  23. Domin K (1945) O promněnlivosti druhu Prunus spinosa. Rozpr 2 Třídy Čes Akad 54:1–39Google Scholar
  24. Eimert K, Rückert FE, Schröder MB (2012) Genetic diversity within and between seedstock populations of several German autochthonous provenances and conventionally propagated nursery material of blackthorn (Prunus spinosa L.) Plant Syst Evol 298:609–618CrossRefGoogle Scholar
  25. Frascaria N, Maggia L, Michaud M, Bousquet J (1993) The rbcL gene sequence from chestnut indicates a slow rate of evolution in the Fagaceae. Genome 36:668–671CrossRefPubMedGoogle Scholar
  26. Gainza-Cortéz F, Moreno MÁ, Reig G, Fabiane KC, Almada R, Ortiz M, Gogorcena Y, Vallés MP, Castillo AM (2014) Ploidy determination by flow cytometry in Prunus species used as rootstocks, p 101. IX Reunión de Biología Vegetal (REBIVE), Región de Coquimbo, ChileGoogle Scholar
  27. Gill BS, Bir SS, Singhal VK (1981) Chromosome number reports LXXI. Taxon 30:513–514Google Scholar
  28. Guitián J, Guitián P, Sánchez JM (1993) Reproductive biology of two Prunus species (Rosaceae) in the Northwest Iberian Peninsula. Plant Syst Evol 185(3–4):153–165CrossRefGoogle Scholar
  29. Haspelová A (1960) Chromozómové analýzy sliviek používaných ako podpníky pre staré marhule na Slovensku a južnej Morave. Biologia 15:690–693Google Scholar
  30. Husband BC, Sabara HA (2004) Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae). New Phytol 161:703–713CrossRefGoogle Scholar
  31. Jarolímek I, Šibík J, Tichý L, Kliment J (2008) Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. In: Jarolímek I, Šibík J (eds) Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. Veda, Bratislava, pp 9–294Google Scholar
  32. Jedrzejczyk I, Sliwinska E (2010) Leaves and seeds as materials for flow cytometry estimation of the genome size of 11 Rosaceae woody species containing DNA–staining inhibitors. J Bot 2010:1–9CrossRefGoogle Scholar
  33. Kamenický K (1927) Naše švestky. Čs Zemědelec 9:213–214Google Scholar
  34. Kavina K (1924) Botanika zemědělská 2. Botanika speciální, část 2. Rostliny prvoobalové (bezkorunné a prostoplátečné). Publ Minist Zeměděl 53:614Google Scholar
  35. Kišacová A (2014) Embryologická, ploidná a ekofyziologická charakteristika rodu Prunus v Západných Karpatoch. PhD. Thesis, Nitra, pp 160Google Scholar
  36. Kišacová A, Ďurišová Ľ, Galuščáková Ľ (2012) Cytoembryological, cytometric and morphometric analysis of Prunus × fetchneri. In: Valšíková M (ed) Horticulture 2012, 4th International scientific horticulture conference. Slovak University of Agriculture, Nitra, pp 158–164Google Scholar
  37. Kišacová A, Ďurišová Ľ, Galuščáková Ľ, Baranec T (2013) Stanovenie veľkosti genómu hybridných taxónov rodu Prunus L. Acta Pruhoniciana 105:49–53Google Scholar
  38. Leinemann L, Kleinschmit J, Fussi B, Hosius B, Kuchma O, Arenhövel W, Lemmen P, Kätzel R, Rogge M, Finkeldey R (2014) Genetic composition and differentiation of sloe (Prunus spinosa L.) populations in Germany with respect to the tracing of reproductive plant material. Plant Syst Evol 300:2115–2125CrossRefGoogle Scholar
  39. KörberGrohne U (1996) Pflaumen, Kirschpflaumen, Schlehen: Heutige Pflanzen und ihre Geschichte seit der Frühzeit. Konrad Theiss Verlag GmbH, Stuttgart, pp 314Google Scholar
  40. Lepší M, Vít P, Lepší P, Boublík K, Kolář F (2009) Sorbus portae bohemicae and Sorbus albensis, two new endemic apomictic species recognized based on a revision of Sorbus bohemica. Preslia 81:63–89Google Scholar
  41. Loureiro J, Rodriguez E, Doležel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888CrossRefPubMedPubMedCentralGoogle Scholar
  42. Löve A, Löve D (1948) Chromosome numbers of northern plant species. University Institute of Applied Sciences, Reykjavik, Ingólfsprent, p 131Google Scholar
  43. Macková L, Vít P, Ďurišová Ľ, Eliáš P Jr, Urfus T (2017) Hybridization success is largely limited to homoploid Prunus hybrids: a multidisciplinary approach. Plant Syst Evol 303:481–495CrossRefGoogle Scholar
  44. Mahelka V, Suda J, Jarolímová V, Trávníček P, Krahulec F (2005) Genome size discriminates between closely related taxa Elytrigia repens and E. intermedia (Poaceae : Triticeae) and their hybrid. Folia Geobot 40:367–384CrossRefGoogle Scholar
  45. Mohanty A, Martín JP, Aguinagalde I (2000) Chloroplast DNA diversity within and among populations of the allotetraploid Prunus spinosa L. Theor Appl Genet 100:1304–1310CrossRefGoogle Scholar
  46. Mohanty A, Martín JP, Aguinagalde I (2002) Population genetic analysis of European Prunus spinosa (Rosaceae) using chloroplast DNA markers. Am J Bot 89:1223–1228CrossRefPubMedGoogle Scholar
  47. Morgan-Richards M, Trewick SA, Chapman HM, Krahulcova A (2004) Interspecific hybridization among Hieracium species in New Zealand: evidence from flow cytometry. Heredity 93:34–42CrossRefPubMedGoogle Scholar
  48. Muráňová K (2012) Taxonomická a populačná štruktúra krovinných biokoridorov poľnohospodársky využívanej krajiny. PhD. Thesis, Nitra, pp 132Google Scholar
  49. Muráňová K, Ďurišová Ľ, Ferus P, Bežo M, Baranec T (2011) Morfometrická a cytometrická charakterizácia genotypov Prunus × fruticans z okrajových zón agrobiocenóz. Acta Fytotech Zootech 2:32–36Google Scholar
  50. Muráňová K, Baranec T, Ikrényi I, Galuščáková Ľ (2013) Analysis of the size, density and spatial structure of Prunus × fruticans populations in southwestern Slovakia. Acta Pruhoniciana 53:91–96Google Scholar
  51. Murín A (1978) Prunus spinosa L. In: Májovský J. et al. (eds), Index of chromosome numbers of Slovakian flora (Part 6). Acta Fac. Rerum Nat. Univ. Comen., Bot. 26: 142Google Scholar
  52. Murín A (1960) Substitution of celophane for glass covers to faciliate preparation of permanent squashes and smears. Stain Technol 35:351–353PubMedGoogle Scholar
  53. Nielsen J, Olrik DC (2001) A morphometric analysis of Prunus spinosa, P. domestica ssp. insititia, and their putative hybrids in Denmark. Nord J Bot 21:349–363CrossRefGoogle Scholar
  54. Otto F (1990) DAPI staining of fixed cells for highresolution flow cytometry of nuclear DNA. In: Crissman HA, Darzynkiewicz Z (eds) Methods in cell biology 33. Academic Press, New York, pp 102–110Google Scholar
  55. Rehder A (1954) Manual of cultivated trees and shrubs. MacMillan Company, New York, p 996Google Scholar
  56. Rybnikárová J, Baranec T, Ďurišová Ľ (2009) Predbežné výsledky štúdia reprodukčnej biológie Prunus spinosa agg. Acta Pruhoniciana 93:5–9Google Scholar
  57. Sádlo J, Chytrý M (2013) KBB Berberidion vulgaris Br.Bl. ex Tüxen 1952. In: Chytrý M (ed) Vegetace České republiky. 4. Lesní a křovinná vegetace. Academia, Praha, pp 87–93Google Scholar
  58. Schneider CK (1906) Illustriertes Handbuch der Laubholzkunde 1. Verlag Gustav Fischer, Jena, p 217Google Scholar
  59. Siljak-Yakovlev S, Pustahija F, Šolić EM, Bogunić F, Muratović E, Bašić N, Catrice O, Brown SC (2010) Towards a genome size and chromosome number database of Balkan flora: Cvalues in 343 taxa with novel values for 242. Adv Sci Lett 3:190–213CrossRefGoogle Scholar
  60. StatSoft. Inc. (2005) STATISTICA Cz [Data analysis software system]. Version 7.1. Www.StatSoft.Cz
  61. Uhríková A, Májovský J (1983) Prunus spinosa subsp. dasyphylla [Report], pp. 507. In: Löve Á (ed) IOPB Chromosome number reports LXXX, Taxon, vol 32, pp 504–511Google Scholar
  62. Vander Mijnsbrugge K, Depypere L, Chaerle P, Goetghebeur P, Breyne P (2013) Genetic and morfological variability among autochthonous Prunus spinosa populations in Flanders (northern part of Belgium): implications for seed sourcing. Plant Ecol Evol 146:193–202CrossRefGoogle Scholar
  63. Vujović T, Cerović R, Ružić D (2012) Ploidy level stability of adventitious shoots of sour cherry Čačanski Rubin and Gisela 5 cherry rootstock. Plant Cell Tissue Organ Cult 111:323–333CrossRefGoogle Scholar
  64. Woldring H (2000) On the origin of plums: a stude of sloe, damson, cherry plum, domestic plums and their intermediatte forms. Palaeohistoria 39(40):535–562Google Scholar
  65. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U S A 84:9054–9058CrossRefPubMedPubMedCentralGoogle Scholar
  66. Yokoya K, Roberts AV, Mottley J, Lewis R, Brandham PE (2000) Nuclear DNA amounts roses. Ann Bot 85:557–561CrossRefGoogle Scholar

Copyright information

© Plant Science and Biodiversity Centre, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Michal Žabka
    • 1
  • Ľuba Ďurišová
    • 1
  • Pavol EliášJr
    • 1
    Email author
  • Tibor Baranec
    • 1
  1. 1.Department of BotanySlovak University of AgricultureNitraSlovakia

Personalised recommendations