Skip to main content
Log in

Genome size and ploidy level among wild and cultivated Prunus taxa in Slovakia

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

2C DNA content and ploidy level variation of Prunus spinosa and closely related taxa together with Prunus domestica L. and Prunus insititia L. was studied in Slovakia. The aim of the study was to define genome sizes and find differences between closely related taxa within Prunus spinosa sensu lato mentioned in previous works. According to our results, investigated taxa can be divided into three groups according to ploidy level: Prunus spinosa, Prunus dasyphylla, Prunus ×fruticans, Prunus ×dominii and Prunus ×schurii are tetraploids, Prunus ×fechtneri is pentaploid, and P. domestica and P. insititia are hexaploids. Genome size differences within tetraploid taxa were relatively small (Prunus spinosa: 1.40 ± 0.02, P. ×domini: 1.44 ± 0.01, P. ×fruticans: 1.48 ± 0.02, P. ×schurii: 1.44 ± 0.02), but statistically significant. Although further research is needed, it seems that the concept of several taxa as product of hybridization between P. spinosa and cultivated plum species has been supported by our study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:208–218

    Article  CAS  Google Scholar 

  • Ascherson P, Graebner P (1906) Synopsis der mitteleuropâischen Flora 6/2. Engelmann, Leipzig, pp 160

    Google Scholar 

  • Baack EJ (2004) Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus : Ranunculaceae). Am J Bot 91:1783–1788

    Article  PubMed  Google Scholar 

  • Baranec T (1990) Nové spontánne krížence rodu Prunus L. pre ČeskoSlovensko. Dendrol Sděl 34:38–40

    Google Scholar 

  • Baranec T, Žgančíková I, Muráňová K (2011) Predbežné výsledky štúdia taxonomickej a morfologickej variability rodu Prunus L. v biokoridoroch poľnohospodárskej krajiny na JZ Slovensku. Acta Pruhoniciana 99:97–101

    Google Scholar 

  • Ben Tamarzizt H, Walker D, Ben Mustapha S, Abdallah D, Baraket G, Salhi Hannachi A, Zehdi Azzouzi S (2015) DNA variation and polymorphism in Tunisian plum species (Prunus spp.): contribution of flow cytometry and molecular markers. Genet Mol Res 14:18034–18046

    Article  CAS  PubMed  Google Scholar 

  • Bertová L (ed) (1992) Flóra Slovenska I V/3. VEDA, Bratislava, p 498

    Google Scholar 

  • Bureš P, Wang YF, Tichý L, Bartoš J (2003) Polypodium × mantoniae and new localities of P. interjectum in the Czech Republic confirmed using flow cytometry. Preslia 75:293–310

    Google Scholar 

  • Bureš P, Wang YF, Horová L, Suda J (2004) Genome Size Variation in Central European Species of Cirsium (Compositae) and their Natural Hybrids. Ann Bot 94:353–363

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouhadida M, Martín JP, Eremin G, Pinochet J, Gogorcena Y (2007) Chloroplast DNA diversity in Prunus and its implication on genetic relationships. J Amer Soc Hort Sci 132:670–679

    CAS  Google Scholar 

  • Čelakovský LJ (1879) Analytická květena Čech, Moravy a rakouského Slezska. F Tempský, Praha, pp 412

    Google Scholar 

  • Coast AM (1965) Garden shrubs and their histories. University of Michigan, Dutton, p 410

    Google Scholar 

  • Darlington CD, Ammal-Janaki EK (1945) Chromosome Atlas of Flowering Plants. Allen & Unwin LTD, London, p 149

    Google Scholar 

  • Darlington CD, Wylie AP (1955) Chromosome atlas of flowering plants. George Allen and Unwin Ltd., London, p 519

    Google Scholar 

  • Das B, Ahmed N, Singh P (2011) Prunus diversity – early and present development: A review. Int J Biodivers Conserv 3:721–734

    Google Scholar 

  • Depypere L, Chaerle P, Vander MK, Goethebeur P (2007) Stony endocarp dimension and shape variation in Prunus Section Prunus. Ann Bot 100:1585–1597

    Article  PubMed  PubMed Central  Google Scholar 

  • Depypere L, Chaerle P, Breyne P, Vander MK, Goetghebeur P (2009) A combined morphometric and AFLP based diversity study challenges the taxonomy of the European members of the complex Prunus L. section Prunus. Plant Syst Evol 279:219–231

    Article  Google Scholar 

  • Dickson EE, Arumuganathan K, Kresovich S, Doyle JJ (1992) Nuclear DNA content variation within the Rosaceae. Amer J Bot 79:1081–1086

    Article  Google Scholar 

  • Doležel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using highresolution flow cytometry. Cytometry 19:103–106

    Article  PubMed  Google Scholar 

  • Doležel J, Bartoš J (2005) Plant DNA Flow Cytometry and Estimation of Nuclear Genome Size. Ann Bot 95:99–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Doležel J, Doleželová M, Novák FJ (1994) Flow cytometric estimation on nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Plant 36:351–357

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim, pp 479

    Book  Google Scholar 

  • Domin K (1945) O promněnlivosti druhu Prunus spinosa. Rozpr 2 Třídy Čes Akad 54:1–39

    Google Scholar 

  • Eimert K, Rückert FE, Schröder MB (2012) Genetic diversity within and between seedstock populations of several German autochthonous provenances and conventionally propagated nursery material of blackthorn (Prunus spinosa L.) Plant Syst Evol 298:609–618

    Article  Google Scholar 

  • Frascaria N, Maggia L, Michaud M, Bousquet J (1993) The rbcL gene sequence from chestnut indicates a slow rate of evolution in the Fagaceae. Genome 36:668–671

    Article  CAS  PubMed  Google Scholar 

  • Gainza-Cortéz F, Moreno MÁ, Reig G, Fabiane KC, Almada R, Ortiz M, Gogorcena Y, Vallés MP, Castillo AM (2014) Ploidy determination by flow cytometry in Prunus species used as rootstocks, p 101. IX Reunión de Biología Vegetal (REBIVE), Región de Coquimbo, Chile

    Google Scholar 

  • Gill BS, Bir SS, Singhal VK (1981) Chromosome number reports LXXI. Taxon 30:513–514

    Google Scholar 

  • Guitián J, Guitián P, Sánchez JM (1993) Reproductive biology of two Prunus species (Rosaceae) in the Northwest Iberian Peninsula. Plant Syst Evol 185(3–4):153–165

    Article  Google Scholar 

  • Haspelová A (1960) Chromozómové analýzy sliviek používaných ako podpníky pre staré marhule na Slovensku a južnej Morave. Biologia 15:690–693

    Google Scholar 

  • Husband BC, Sabara HA (2004) Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae). New Phytol 161:703–713

    Article  Google Scholar 

  • Jarolímek I, Šibík J, Tichý L, Kliment J (2008) Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. In: Jarolímek I, Šibík J (eds) Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. Veda, Bratislava, pp 9–294

    Google Scholar 

  • Jedrzejczyk I, Sliwinska E (2010) Leaves and seeds as materials for flow cytometry estimation of the genome size of 11 Rosaceae woody species containing DNA–staining inhibitors. J Bot 2010:1–9

    Article  Google Scholar 

  • Kamenický K (1927) Naše švestky. Čs Zemědelec 9:213–214

    Google Scholar 

  • Kavina K (1924) Botanika zemědělská 2. Botanika speciální, část 2. Rostliny prvoobalové (bezkorunné a prostoplátečné). Publ Minist Zeměděl 53:614

    Google Scholar 

  • Kišacová A (2014) Embryologická, ploidná a ekofyziologická charakteristika rodu Prunus v Západných Karpatoch. PhD. Thesis, Nitra, pp 160

  • Kišacová A, Ďurišová Ľ, Galuščáková Ľ (2012) Cytoembryological, cytometric and morphometric analysis of Prunus × fetchneri. In: Valšíková M (ed) Horticulture 2012, 4th International scientific horticulture conference. Slovak University of Agriculture, Nitra, pp 158–164

    Google Scholar 

  • Kišacová A, Ďurišová Ľ, Galuščáková Ľ, Baranec T (2013) Stanovenie veľkosti genómu hybridných taxónov rodu Prunus L. Acta Pruhoniciana 105:49–53

    Google Scholar 

  • Leinemann L, Kleinschmit J, Fussi B, Hosius B, Kuchma O, Arenhövel W, Lemmen P, Kätzel R, Rogge M, Finkeldey R (2014) Genetic composition and differentiation of sloe (Prunus spinosa L.) populations in Germany with respect to the tracing of reproductive plant material. Plant Syst Evol 300:2115–2125

    Article  Google Scholar 

  • KörberGrohne U (1996) Pflaumen, Kirschpflaumen, Schlehen: Heutige Pflanzen und ihre Geschichte seit der Frühzeit. Konrad Theiss Verlag GmbH, Stuttgart, pp 314

  • Lepší M, Vít P, Lepší P, Boublík K, Kolář F (2009) Sorbus portae bohemicae and Sorbus albensis, two new endemic apomictic species recognized based on a revision of Sorbus bohemica. Preslia 81:63–89

    Google Scholar 

  • Loureiro J, Rodriguez E, Doležel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Löve A, Löve D (1948) Chromosome numbers of northern plant species. University Institute of Applied Sciences, Reykjavik, Ingólfsprent, p 131

    Google Scholar 

  • Macková L, Vít P, Ďurišová Ľ, Eliáš P Jr, Urfus T (2017) Hybridization success is largely limited to homoploid Prunus hybrids: a multidisciplinary approach. Plant Syst Evol 303:481–495

    Article  Google Scholar 

  • Mahelka V, Suda J, Jarolímová V, Trávníček P, Krahulec F (2005) Genome size discriminates between closely related taxa Elytrigia repens and E. intermedia (Poaceae : Triticeae) and their hybrid. Folia Geobot 40:367–384

    Article  Google Scholar 

  • Mohanty A, Martín JP, Aguinagalde I (2000) Chloroplast DNA diversity within and among populations of the allotetraploid Prunus spinosa L. Theor Appl Genet 100:1304–1310

    Article  CAS  Google Scholar 

  • Mohanty A, Martín JP, Aguinagalde I (2002) Population genetic analysis of European Prunus spinosa (Rosaceae) using chloroplast DNA markers. Am J Bot 89:1223–1228

    Article  CAS  PubMed  Google Scholar 

  • Morgan-Richards M, Trewick SA, Chapman HM, Krahulcova A (2004) Interspecific hybridization among Hieracium species in New Zealand: evidence from flow cytometry. Heredity 93:34–42

    Article  CAS  PubMed  Google Scholar 

  • Muráňová K (2012) Taxonomická a populačná štruktúra krovinných biokoridorov poľnohospodársky využívanej krajiny. PhD. Thesis, Nitra, pp 132

  • Muráňová K, Ďurišová Ľ, Ferus P, Bežo M, Baranec T (2011) Morfometrická a cytometrická charakterizácia genotypov Prunus × fruticans z okrajových zón agrobiocenóz. Acta Fytotech Zootech 2:32–36

    Google Scholar 

  • Muráňová K, Baranec T, Ikrényi I, Galuščáková Ľ (2013) Analysis of the size, density and spatial structure of Prunus × fruticans populations in southwestern Slovakia. Acta Pruhoniciana 53:91–96

    Google Scholar 

  • Murín A (1978) Prunus spinosa L. In: Májovský J. et al. (eds), Index of chromosome numbers of Slovakian flora (Part 6). Acta Fac. Rerum Nat. Univ. Comen., Bot. 26: 142

  • Murín A (1960) Substitution of celophane for glass covers to faciliate preparation of permanent squashes and smears. Stain Technol 35:351–353

    PubMed  Google Scholar 

  • Nielsen J, Olrik DC (2001) A morphometric analysis of Prunus spinosa, P. domestica ssp. insititia, and their putative hybrids in Denmark. Nord J Bot 21:349–363

    Article  Google Scholar 

  • Otto F (1990) DAPI staining of fixed cells for highresolution flow cytometry of nuclear DNA. In: Crissman HA, Darzynkiewicz Z (eds) Methods in cell biology 33. Academic Press, New York, pp 102–110

    Google Scholar 

  • Rehder A (1954) Manual of cultivated trees and shrubs. MacMillan Company, New York, p 996

    Google Scholar 

  • Rybnikárová J, Baranec T, Ďurišová Ľ (2009) Predbežné výsledky štúdia reprodukčnej biológie Prunus spinosa agg. Acta Pruhoniciana 93:5–9

    Google Scholar 

  • Sádlo J, Chytrý M (2013) KBB Berberidion vulgaris Br.Bl. ex Tüxen 1952. In: Chytrý M (ed) Vegetace České republiky. 4. Lesní a křovinná vegetace. Academia, Praha, pp 87–93

    Google Scholar 

  • Schneider CK (1906) Illustriertes Handbuch der Laubholzkunde 1. Verlag Gustav Fischer, Jena, p 217

    Google Scholar 

  • Siljak-Yakovlev S, Pustahija F, Šolić EM, Bogunić F, Muratović E, Bašić N, Catrice O, Brown SC (2010) Towards a genome size and chromosome number database of Balkan flora: Cvalues in 343 taxa with novel values for 242. Adv Sci Lett 3:190–213

    Article  CAS  Google Scholar 

  • StatSoft. Inc. (2005) STATISTICA Cz [Data analysis software system]. Version 7.1. Www.StatSoft.Cz

  • Uhríková A, Májovský J (1983) Prunus spinosa subsp. dasyphylla [Report], pp. 507. In: Löve Á (ed) IOPB Chromosome number reports LXXX, Taxon, vol 32, pp 504–511

    Google Scholar 

  • Vander Mijnsbrugge K, Depypere L, Chaerle P, Goetghebeur P, Breyne P (2013) Genetic and morfological variability among autochthonous Prunus spinosa populations in Flanders (northern part of Belgium): implications for seed sourcing. Plant Ecol Evol 146:193–202

    Article  Google Scholar 

  • Vujović T, Cerović R, Ružić D (2012) Ploidy level stability of adventitious shoots of sour cherry Čačanski Rubin and Gisela 5 cherry rootstock. Plant Cell Tissue Organ Cult 111:323–333

    Article  Google Scholar 

  • Woldring H (2000) On the origin of plums: a stude of sloe, damson, cherry plum, domestic plums and their intermediatte forms. Palaeohistoria 39(40):535–562

    Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U S A 84:9054–9058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoya K, Roberts AV, Mottley J, Lewis R, Brandham PE (2000) Nuclear DNA amounts roses. Ann Bot 85:557–561

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted for two anonymous reviewers for valuable comments to the manuscript. Scott Burgess kindly improved our English. This work was supported by Research Center AgroBioTech built in accordance with the project Building Research Centre „AgroBioTech” ITMS 26220220180 and by grant VEGA no. 1/0083/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavol Eliáš Jr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Žabka, M., Ďurišová, Ľ., Eliáš, P. et al. Genome size and ploidy level among wild and cultivated Prunus taxa in Slovakia. Biologia 73, 121–128 (2018). https://doi.org/10.2478/s11756-018-0014-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-018-0014-9

Keywords

Navigation