Advertisement

Biologia

, Volume 73, Issue 1, pp 101–106 | Cite as

The effect of T-2 toxin on bone microstructure in rabbits

  • Ramona Babosova
  • Radoslav Omelka
  • Hana Duranova
  • Martina Lukacova
  • Vladimira Mondockova
  • Maria Bauerova
  • Marcela Capcarova
  • Monika Martiniakova
Original Article

Abstract

T-2 toxin is the most toxic of the trichothecene mycotoxins. Its effect on bone microstructure is still unknown. This study focuses on acute effects of the T-2 toxin on compact and trabecular bone tissues structure of rabbits after a single intramuscular administration. Experimental E group (n = 4) consisted of animals which were intramuscularly injected with T-2 toxin at dose 0.08 mg.kg−1 body weight 72 h before slaughter. Group C (n = 4) without T-2 toxin application served as a control. An absence of primary vascular longitudinal bone tissue near endosteal surfaces, its deposition on periosteal surfaces and a lower density of secondary osteons in the middle part of the substantia compacta were observed in both females and males injected with T-2 toxin. On the contrary, morphometrical analysis of the compact bone showed no demonstrable alternations in the sizes of primary osteons’ vascular canals, Haversian canals or secondary osteons between rabbits from E and C groups. Also, no significant effects of the T-2 toxin on trabecular bone morphometry and cortical bone thickness were observed between rabbits of either sex. The single intramuscular application of T-2 toxin at the dose used in our study affects only qualitative histological characteristics of the compact bone in rabbits.

Keywords

Bone Histology Intramuscular application Rabbit T-2 toxin 

Notes

Acknowledgments

The study was supported by the grants VEGA 1/0653/16 and KEGA 031UKF-4/2016. The authors gratefully acknowledge the revision of the English text by Kim Dammers.

References

  1. Atashi F, Modarressi A, Pepper MS (2015) The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev 24:1150–1163.  https://doi.org/10.1089/scd.2014.0484 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Brzoska MM, Rogalska J, Kupraszewicz E (2011) The involvement of oxidative stress in the mechanisms of damaging cadmium action in bone tissue: a study in a rat model of moderate and relatively high human exposure. Toxicol Appl Pharmacol 250:327–335.  https://doi.org/10.1016/j.taap.2010.11.012 CrossRefPubMedGoogle Scholar
  3. Capcarova M, Zbynovska K, Kalafova A, Bulla J, Bielik P (2016) Environment contamination by mycotoxins and their occurrence in food and feed: physiological aspects and economical approach. J Environ Sci Health B 51:236–244.  https://doi.org/10.1080/03601234.2015.1120617 CrossRefPubMedGoogle Scholar
  4. Chovancova H, Martiniakova M, Omelka R, Grosskopf B, Toman R (2011) Structural changes in femoral bone tissue of rats after intraperitoneal administration of nickel. Pol J Environ Stud 20:1147–1152Google Scholar
  5. Duranova H, Kovacova V, Babosova R, Omelka R, Capcarova M, Martiniakova M (2015) Sex-related variations in bone microstructure of rabbits intramuscularly exposed to patulin. Acta Vet Scand 57:50.  https://doi.org/10.1186/s13028-015-0140-0 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Enlow DH, Brown SO (1956) A comparative histological study of fossil and recent bone tissues. Part I. Tex J Sci 8:405–412Google Scholar
  7. Enlow DH, Brown SO (1958) A comparative histological study of fossil and recent bone tissues. Part III. Tex J Sci 10:187–230Google Scholar
  8. Escriva L, Font G, Manyes L (2015) In vivo toxicity studies of fusarium mycotoxins in the last decade: a review. Food Chem Toxicol 78:185–206.  https://doi.org/10.1016/j.fct.2015.02.005 CrossRefPubMedGoogle Scholar
  9. Kalantari H, Moosavi M (2010) Review on T-2 toxin. Jundishapur J Nat Pharm Prod 5:26–38Google Scholar
  10. Khatun S, Chaakraborty M, Islam A, Cakilcioglu U, Chatterjee NC (2012) Mycotoxins as health hazard. Biol Diversity Conserv 5:123–133Google Scholar
  11. Kirincic S, Skrjanc B, Kos N, Kozolc B, Pirnat N, Tavcar-Kalcher G (2015) Mycotoxins in cereals and cereal products in Slovenia - official control of foods in the years 2008-2012. Food Control 50:157–163.  https://doi.org/10.1016/j.foodcont.2014.08.034 CrossRefGoogle Scholar
  12. Kolesarova A, Capcarova M, Maruniakova N, Lukac N, Ciereszko RE, Sirotkin AV (2012) Resveretrol inhibits reproductive toxicity induced by deoxynivalenol. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:1329–1334.  https://doi.org/10.1080/10934529.2012.672144 CrossRefPubMedGoogle Scholar
  13. Koppen R, Bremser W, Stephan I, Klein-Hartwig K, Rasenko T, Koch M (2014) T-2 and HT-2 toxins on oat flakes: development of a certified reference material. Anal Bioanal Chem 407:2997–3007.  https://doi.org/10.1007/s00216-014-8251-4 CrossRefPubMedGoogle Scholar
  14. Kovacs M, Tornyos G, Matics Z, Kametler L, Rajli V, Bodnar Z, Kulcsar M, Huszenicza G, Keresztes Z, Cseh S (2011) Subsequent effect of subacute T-2 toxicosis on spermatozoa, seminal plasma and testosterone production in rabbits. Animal 5:1563–1569.  https://doi.org/10.1017/S1751731111000644 CrossRefPubMedGoogle Scholar
  15. Li Y, Wang Z, Beier RC, Shen J, Smet DD, De Saeger S, Zhang S (2011) T-2 toxin, a trichothecene mycotoxin: review of toxicity, metabolism, and analytical methods. J Agric Food Chem 59:3441–3453.  https://doi.org/10.1021/jf200767q CrossRefPubMedGoogle Scholar
  16. Makowska K, Obremski K, Zielonka L, Gonkowski S (2017) The influence of low doses of zearalenone and T-2 toxin on calcitonin gene related peptide-like immunoreactive (CGRP-LI) neurons in the ENS of the porcine descending colon. Toxins 9:E98.  https://doi.org/10.3390/toxins9030098 CrossRefPubMedGoogle Scholar
  17. Martiniakova M, Vondrakova M, Fabis M (2003) Investigation of the microscopic structure of rabbit compact bone tissue. Scr Med (Brno) 76:215–220Google Scholar
  18. Martiniakova M, Omelka R, Grosskopf B, Sirotkin AV, Chrenek P (2008) Sex-related variation in compact bone microstructure of the femoral diaphysis in juvenile rabbits. Acta Vet Scand 50:49.  https://doi.org/10.1186/1751-0147-50-15 CrossRefGoogle Scholar
  19. Martiniakova M, Chovancova H, Omelka R, Grosskopf B, Toman R (2011) Effects of a single intraperitoneal administration of cadmium on femoral bone structure in male rats. Acta Vet Scand 53:49.  https://doi.org/10.1186/1751-0147-53-49 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Matejova I, Faldyna M, Modra H, Blahova J, Palikova M, Markova Z, Franc A, Vicenova M, Vojtek L, Bartonkova J, Sehonova P, Hostovsky M, Svobodova Z (2017) Effect of T-2 toxin-contaminated diet on common carp (Cyprinus carpio L.) Fish Shellfish Immunol 60:458–456.  https://doi.org/10.1016/j.fsi.2016.11.032 CrossRefPubMedGoogle Scholar
  21. Moretti A, Logrieco AF, Susca A (2017) Mycotoxins: an underhand food problem. Methods Mol Biol 1542:3–12.  https://doi.org/10.1007/978-1-4939-6707-0_1 CrossRefPubMedGoogle Scholar
  22. Obremski K (2014) Changes in Th1 and Th2 cytokine concentrations in ileal Peyer’s patches in gilts exposed to zearalenone. Pol J Vet Sci 17:53–59PubMedGoogle Scholar
  23. Pinton P, Oswald IP (2014) Effect of deoxynivalenol and other type B trichothecenes on the intestine: a review. Toxins 6:1615–1643.  https://doi.org/10.3390/toxins6051615 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ricqles AJ, Meunier FJ, Castanet J, Francillon-Vieillot H (1991) Comparative microstructure of bone. In: Hall BK (ed) Bone 3, bone matrix and bone specific products. CRC Press, Bocca Raton, pp 1–78Google Scholar
  25. Rousseaux CG, Schiefer HB (1987) Maternal toxicity, embryolethality and abnormal fetal development in CD-1 mice following one oral dose of T-2 toxin. J Appl Toxicol 7:281–288.  https://doi.org/10.1002/jat.2550070410 CrossRefPubMedGoogle Scholar
  26. Seeman E (2007) The periosteum – a surface for all seasons. Osteoporos Int 18:123–128.  https://doi.org/10.1007/s00198-007-0329-9 CrossRefPubMedGoogle Scholar
  27. Skedros JG, Mendenhall SD, Kiser CJ, Winet H (2009) Interpreting cortical bone adaptation and load history by quantifying osteon morphotypes in circulary polarized light images. Bone 44:392–403.  https://doi.org/10.1016/j.bone.2008.10.053 CrossRefPubMedGoogle Scholar
  28. Sokolovic M, Garaj-Vrhovac V, Simpraga B (2008) T-2 toxin: incidence and toxicity in poultry. Arh Hig Rada Toksikol 59:43–52.  https://doi.org/10.2478/10004-1254-59-2008-1843 CrossRefPubMedGoogle Scholar
  29. Wu QH, Wang X, Yang W, Nussler AK, Xiong LY, Kuca K, Dohnal V, Zhang XJ, Yuan ZH (2014) Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: an update. Arch Toxicol 88:1309–1326.  https://doi.org/10.1007/s00204-014-1280-0 CrossRefPubMedGoogle Scholar
  30. Yuan Z, Matias FB, Yi JE, Wu J (2016) T-2 toxin-induced cytotoxicity and damage on TM3 Leydig cells. Comp Biochem Physiol C Toxicol Pharmacol 181-182:47–54.  https://doi.org/10.1016/j.cbpc.2015.12.005 CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Zoology, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Ramona Babosova
    • 1
  • Radoslav Omelka
    • 2
  • Hana Duranova
    • 1
  • Martina Lukacova
    • 2
  • Vladimira Mondockova
    • 2
  • Maria Bauerova
    • 2
  • Marcela Capcarova
    • 3
  • Monika Martiniakova
    • 1
  1. 1.Department of Zoology and Anthropology, Faculty of Natural SciencesConstantine the Philosopher University in NitraNitraSlovak Republic
  2. 2.Department of Botany and Genetics, Faculty of Natural SciencesConstantine the Philosopher University in NitraNitraSlovak Republic
  3. 3.Department of Animal PhysiologySlovak University of Agriculture in NitraNitraSlovak Republic

Personalised recommendations