Biologia

, Volume 73, Issue 1, pp 53–65 | Cite as

Hypocrealean fungi associated with populations of Ips typographus in West Carpathians and selection of local Beauveria strains for effective bark beetle control

  • Marek Barta
  • Ivona Kautmanová
  • Helena Čičková
  • Ján Ferenčík
  • Štefan Florián
  • Július Novotný
  • Milan Kozánek
Original Article

Abstract

In Slovakia, a diversity of entomopathogenic fungi (Ascomycota, Hypocreales) associated with outbreaks of Ips typographus was studied in 81 localities and as many as 113 in vitro cultures of five entomopathogenic species were isolated from infected individuals: Beauveria bassiana (87 isolates), B. pseudobassiana (14 isolates), B. caledonica (6 isolates), Lecanicillium lecanii (4 isolates) and Isaria farinosa (2 isolates). B. pseudobassiana is recorded in natural populations of I. typographus for the first time. Biological properties of selected Beauveria isolates, including colony growth, biomass production, conidia yield and pathogenicity to I. typographus adults, were studied in a series of laboratory bioassays and much intra- and interspecific variability was detected. B. bassiana isolates produced biomass or conidia at significantly higher rate than B. pseudobassiana and B. caledonica isolates. Two B. bassiana isolates were selected as the most virulent to bark beetle adults, demonstrating a mean LC50 ranging from 0.72 to 2.05 × 106 conidia ml−1, and were qualified as promising candidates for biocontrol of I. typographus. Their virulence was significantly higher than that of the mycoinsecticides Boverol®, which was used as a reference strain in the virulence bioassays.

Keywords

Beauveria bassiana, B. pseudobassiana, B. caledonica, biocontrol Outbreak Strain selection Virulence 

Notes

Acknowledgement

This research was funded by the Operational Program of Research and Development and co-financed with the European Fund for Regional Development (EFRD). Grant: ITMS 26220220087: The development of ecological methods to control chosen forest pests in vulnerable mountainous regions of Slovakia.

Supplementary material

11756_2018_5_MOESM1_ESM.pdf (116 kb)
Online Resource 1 (PDF 115 kb)

References

  1. Agrawal Y, Mual P, Shenoy BD (2014) Multi-gene genealogies reveal cryptic species Beauveria rudraprayagi sp. nov. from India. Mycosphere 5:719–736CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402.  https://doi.org/10.1093/nar/25.17.3389 CrossRefPubMedCentralPubMedGoogle Scholar
  3. Ariyawansa HA, Hyde KD, Jayasiri SC et al (2015) Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 75:27–274.  https://doi.org/10.1007/s13225-015-0346-5 CrossRefGoogle Scholar
  4. Augustyniuk-Kram A, Kram KJ (2012) Entomopathogenic fungi as an important natural regulator of insect outbreaks in forests (Review). In: Blanco JA, Lo YH (eds) Forest ecosystems - more than just trees. InTech, Rijeka, pp 265–294Google Scholar
  5. Barta M (2010) Pathogenicity assessment of entomopathogenic fungi infecting Leptoglossus occidentalis (Heteroptera: Coreidae). Czech Mycol 62:67–78Google Scholar
  6. Bisset J, Widden P (1988) A new species of Beauveria isolated from Scottish moorland soil. Can J Bot 66:361–362CrossRefGoogle Scholar
  7. Bugeme DM, Maniania NK, Knapp M, Boga HI (2008) Effect of temperature on virulence of Beauveria bassiana and Metarhizium anisopliae isolates to Tetranychus evansi. Exp Appl Acarol 46:275–285.  https://doi.org/10.1007/s10493-008-9179-1 CrossRefPubMedGoogle Scholar
  8. Chen MJ, Huang B, Li Z, Spatafora JW (2013) Morphological and genetic characterisation of Beauveria sinensis sp. nov. from China. Mycotaxon 124:301–308.  https://doi.org/10.5248/124.301 CrossRefGoogle Scholar
  9. Draganova S, Takov D, Doychev D (2007) Bioassays with isolates of Beauveria bassiana (Bals.) Vuill. and Paecilomyces farinosus (Holm.) Brown & Smith against Ips sexdentatus Boerner and Ips acuminatus Gyll. (Coleoptera: Scolytidae). Plant Sci 44:24–28Google Scholar
  10. Draganova S, Takov D, Doychev D (2010) Naturally-occurring entomopathogenic fungi on three bark beetle species (Coleoptera: Curculionidae) in Bulgaria. Pestic Phytomedicine (Belgrade) 25:59–63.  https://doi.org/10.2298/PIF1001059D CrossRefGoogle Scholar
  11. Falťan V, Bánovský M, Blažek M (2011) Evaluation of land cover changes after extraordinary windstorm by using the land cover metrics: a case study on the high Tatras foothill. Aust Geogr 116:156–171Google Scholar
  12. Ferenčík J (2016) Lykožrút smrekový vo Vysokých Tatrách [European spruce bark beetle in Tatra Mts]. In: Zouhar V (ed) Proceedings of conference Karpatské lesy, Bunč, Czech Republic, pp 101–114Google Scholar
  13. Fernandes EK, Angelo IC, Rangel DE et al (2011) An intensive search for promising fungal biological control agents of ticks, particularly Rhipicephalus microplus. Vet Parasitol 182:307–318.  https://doi.org/10.1016/j.vetpar.2011.05.046 CrossRefPubMedGoogle Scholar
  14. Finney DJ (1971) Probit analysis. Cambridge University Press, LondonGoogle Scholar
  15. Fleischer P Jr, Fleischer P, Ferenčík J, Hlaváč P, Kozánek M (2016) Elevated bark temperature in unremoved stumps after disturbances facilitates multi-voltinism in Ips typographus population in a mountainous forest. Lesn Cas For J 62:15–22.  https://doi.org/10.1515/forj-2016-0002 Google Scholar
  16. Fora CG, Banu CM, Chisăliţă I, Moatăr MM, Oltean I (2014) Parasitoids and predators of Ips typographus (L.) in unmanaged and managed spruce forests in Natural Park Apuseni, Romania. Not Bot Horti Agrobo 42:270–274.  https://doi.org/10.15835/nbha4219430 Google Scholar
  17. Glare TR, Reay SD, Nelson TL, Moore R (2008) Beauveria caledonica is a naturally occurring pathogen of forest beetles. Mycol Res 112:352–360.  https://doi.org/10.1016/j.mycres.2007.10.015 CrossRefPubMedGoogle Scholar
  18. Goettel MS, Poprawski TJ, Vandenberg JD, Li Z, Roberts DW (1990) Safety to non-target invertebrates of fungal biocontrol agents. In: Laird M, Lacey LA, Davidson EW (eds) Safety of microbial insecticides. CRC Press, Boca Raton, pp 209–231Google Scholar
  19. Grodzki W, Kosibowicz M (2015) An attempt to use the fungus Beauveria bassiana (Bals.) Vuill. In forest protection against the bark beetle Ips typographus (L.) in the field. Forest Res Pap 76:5–17.  https://doi.org/10.1515/frp-2015-0001 Google Scholar
  20. Hallet S, Gregoire JC, Coremans-Pelseneer J (1994) Prospects in the use of the entomopathogenous fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycetes: Hyphomycetes) to control the spruce bark beetle Ips typographus L. (Coleoptera: Scolytidae). Meded Fak Landbouwwet R U Gent 59:379–383Google Scholar
  21. Herrmann F, Wegensteiner R (2010) Infecting Ips typographus (Coleoptera, Curculionidae) with Beauveria bassiana, Metarhizium anisopliae or Isaria fumosorosea (Ascomycota). IOBC/wprs Bull 66:209–212Google Scholar
  22. Hilszczański J, Gibb H, Bystrowski C (2007) Insect natural enemies of Ips typographus (L.) (Coleoptera, Scolytinae) in managed and unmanaged stands of mixed lowland forest in Poland. J Pest Sci 80:99–107.  https://doi.org/10.1007/s10340-006-0160-7 CrossRefGoogle Scholar
  23. Humber RA (2012) Identification of entomopathogenic fungi. In: Lacey LA (ed) Manual of techniques in invertebrate pathology. Academic Press, Amsterdam, pp 151–187CrossRefGoogle Scholar
  24. Imoulan A, Wu HJ, Lu WL et al (2016) Beauveria medogensis sp. nov., a new fungus of the entomopathogenic genus from China. J Invertebr Pathol 139:74–81.  https://doi.org/10.1016/j.jip.2016.07.006 CrossRefPubMedGoogle Scholar
  25. Jakuš R, Blaženec M (2011) Treatment of bark beetle attacked trees with entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin. Folia Forest Polonica, ser A 53:150–155Google Scholar
  26. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481CrossRefGoogle Scholar
  27. Kautz M, Dworschak K, Gruppe A, Schopf R (2011) Quantifying spatio-temporal dispersion of bark beetle infestations in epidemic and non-epidemic conditions. Forest Ecol Manag 262:598–608.  https://doi.org/10.1016/j.foreco.2011.04.023 CrossRefGoogle Scholar
  28. Kirschner R (2001) Diversity of filamentous fungi in bark beetle galleries in central Europe. In: Misra JK, Horn BW (eds) Trichomycetes and other fungal groups: Robert W. Lichtwardt Commemoration Volume. Science Publishers Inc., Enfield, pp. 175–196.Google Scholar
  29. Kocaçevik S, Sevim A, Eroğlu M, Demirbağ Z, Demir I (2016) Virulence and horizontal transmission of Beauveria pseudobassiana S.A. Rehner & Humber in Ips sexdentatus and Ips typographus (Coleoptera: Curculionidae). Turk J Agric For 40:241–248.  https://doi.org/10.3906/tar-1504-64 CrossRefGoogle Scholar
  30. Kreutz J, Zimmermann G, Vaupel O (2004a) Horizontal transmission of the entomopathogenic fungus Beauveria bassiana among the spruce bark beetle, Ips typographus (Col., Scolytidae) in the laboratory and under field conditions. Biocontrol Sci Tech 14:837–848.  https://doi.org/10.1080/788222844 CrossRefGoogle Scholar
  31. Kreutz J, Vaupel O, Zimmermann G (2004b) Efficacy of Beauveria bassiana (Bals.) Vuill. Against the spruce bark beetle, Ips typographus L., in the laboratory under various conditions. J Appl Entomol 128:384–389.  https://doi.org/10.1111/j.1439-0418.2004.00813.x CrossRefGoogle Scholar
  32. Kunca A, Zúbrik M (2006) Vetrová kalamita z 19. 11. 2004. In: National Forest Centre (ed). Lesmedium, Bratislava, p. 40. Available at: http://www.forestportal.sk/lesne-hospodarstvo/ochrana-lesa/Documents/Kunca_kalamita.pdf
  33. Lacey LA, Grzywacz D, Shapiro-Ilan DI et al (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41.  https://doi.org/10.1016/j.jip.2015.07.009 CrossRefPubMedGoogle Scholar
  34. Landa Z, Horňák P, Osborne LS, Nováková A, Bursová E (2001) Entomogenous fungi associated with spruce bark beetle Ips typographus L. (Coleoptera, Scolytidae) in the bohemian Forest. Silva Gabreta 6:259–272Google Scholar
  35. Markova G (2000) Pathogenicity of several entomogenous fungi to some of the most serious forest insect pests in Europe. IOBC/wprs Bull 23:231–239Google Scholar
  36. Medo J, Michalko J, Medová J, Cagáň Ľ (2016) Phylogenetic structure and habitat associations of Beauveria species isolated from soils in Slovakia. J Invertebr Pathol 140:46–50.  https://doi.org/10.1016/j.jip.2016.08.009 CrossRefPubMedGoogle Scholar
  37. Mudrončeková S, Mazáň M, Nemčovič M, Šalamon I (2013) Entomopathogenic fungus species Beauveria bassiana (Bals.) and Metarhizium anisopliae (Metsch.) used as mycoinsecticide effective in biological control of Ips typographus (L.) J Microbiol Biotechnol Food Sci 2:2469–2472Google Scholar
  38. Økland B, Bjørnstad ON (2006) A resource-depletion model of forest insect outbreaks. Ecology 87:283–290.  https://doi.org/10.1890/05-0135 CrossRefPubMedGoogle Scholar
  39. Økland B, Netherer S, Marini L (2015) The Eurasian spruce bark beetle: the role of climate. In: Björkman C, Niemelä P (eds) Climate change and insect pests. CABI, Wallingford, pp 202–219.  https://doi.org/10.1079/9781780643786.0202 CrossRefGoogle Scholar
  40. Økland B, Nikolov C, Krokene P, Vakula J (2016) Transition from windfall- to patch-driven outbreak dynamics of the spruce bark beetle Ips typographus. Forest Ecol Manag 363:63–73.  https://doi.org/10.1016/j.foreco.2015.12.007 CrossRefGoogle Scholar
  41. Püntener W (1981) Manual for field trials in plant protection. Ciba-Geigy, BasleGoogle Scholar
  42. Ravensberg WJ (2011) Mass production and product development of a microbial pest control agent. In: Ravensberg WJ (ed) A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods. Springer, New York, pp 59–127CrossRefGoogle Scholar
  43. Reddy KRK, PraveenKumar D, Reddy KRN (2013) Entomopathogenic fungi: a potential bioinsecticide. Kavaka 41:23–32Google Scholar
  44. Rehner SA, Buckley EP (2005) A Beauveria phylogeny inferred from ITS and EF1-a sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97:84–98.  https://doi.org/10.1080/15572536.2006.11832842 PubMedGoogle Scholar
  45. Rehner SA, Minnis AM, Sung GH et al (2011) Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia 103:1055–1073.  https://doi.org/10.3852/10-302 CrossRefPubMedGoogle Scholar
  46. Robène-Soustrade I, Jouen E, Pastou D et al (2015) Description and phylogenetic placement of Beauveria hoplocheli sp. nov. used in the biological control of the sugarcane white grub, Hoplochelus marginalis, on Reunion Island. Mycologia 107:1221–1232.  https://doi.org/10.3852/14-344 CrossRefPubMedGoogle Scholar
  47. Seidl R, Müller J, Hothorn T et al (2015) Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle. J Appl Ecol 53:530–540.  https://doi.org/10.1111/1365-2664.12540 CrossRefPubMedCentralPubMedGoogle Scholar
  48. Stadelmann G, Bugmann H, Wermelinger B, Bigler C (2014) Spatial interactions between storm damage and subsequent infestations by the European spruce bark beetle. Forest Ecol Manag 318:167–174.  https://doi.org/10.1016/j.foreco.2014.01.022 CrossRefGoogle Scholar
  49. Sujeetha JARP, Sahayaraj K (2014) Role of entomopathogenic fungus in pest management. In: Sahayaraj K (ed) Basic and applied aspects of biopesticides. Springer, New Delhi, pp 31–46Google Scholar
  50. Takov D, Doychev D, Linde A et al (2012) Pathogens of bark beetles (Curculionidae: Scolytinae) and other beetles in Bulgaria. Biologia 67:966–972.  https://doi.org/10.2478/s11756-012-0086-x CrossRefGoogle Scholar
  51. Vakula J, Kunca A, Zúbrik M et al (2007) Distribution of two invasive pests in Slovakia since 1996. In: Evans H, Oszako T (eds) Alien invasive species and international trade. IUFRO UNIT, Jedlnia, pp 105–113Google Scholar
  52. Vakula J, Gubka A, Galko J, Varkonda Š (2012) Aplikácia entomopatogénov do populácií škodcov s využitím feromónových lapačov [Application of entomopathogenic fungi into pest populations using pheromone traps]. In: Kunca A (ed) Aktuálne problémy v ochrane lesa 2012. National Forest Centre, Zvolen, pp 92–96Google Scholar
  53. Vakula J, Gubka A, Galko J, Kunca A, Zúbrik M (2013) Podkôrny hmyz – pretrvávajúca hrozba smrečín Slovenska. Aké sú dôvody? [Bark beetles - the continuing threat of spruce forests of Slovakia. What are the reasons?] Les a Letokruhy 7–8:38–39Google Scholar
  54. Vaupel O, Zimmermann G (1996) Orientierende Versuche zur Kombination von Pheromonfallen mit dem insektenpathogenen Pilz Beauveria bassiana (Bals.) Vuill. gegen die Borkenkäferart lps typographus L. (Col., Scolytidae) [Preliminary trials on the combination of pheromone traps with the entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. against the bark beetle species Ips typographus L. (Col., Scolytidae)]. Anz Schadlingskd Pfl 69:175–179CrossRefGoogle Scholar
  55. Vega FE, Meyling NV, Luangsa-Ard JJ, Blackwell M (2012) Chapter 6 – Fungal Entomopathogens. In: Vega FE, Kaya HK (eds) Insect pathology. Academic Press, San Diego, pp 171–220.  https://doi.org/10.1016/B978-0-12-384984-7.00006-3 CrossRefGoogle Scholar
  56. Vicentini S, Faria MR, Oliveira MRV (2001) Screening of Beauveria bassiana (Deuteromycotina: Hyphomycetes) isolates against nymphs of Bemisia tabaci (Genn.) biotype B (Hemiptera: Aleyrodidae) with description of a new bioassay method. Neotrop Entomol 30:97–103.  https://doi.org/10.1590/S1519-566X2001000100015 CrossRefGoogle Scholar
  57. Wegensteiner R (1992) Untersuchungen zur Wirkung von Beauveria-Arten auf Ips typographus (Col., Scolytidae) [Studies on the effect of Beauveria species on Ips typographus (Col., Scolytidae)]. Mitt Dtsch Ges Allg Angew Entomol 8:104–106Google Scholar
  58. Wegensteiner R (1996) Laboratory evaluation of Beauveria bassiana (Bals.) Vuill. against the bark beetle, Ips typographus (L.) (Coleoptera, Scolytidae). IOBC/wprs Bull 19:186–189Google Scholar
  59. Wegensteiner R (2007) Pathogens in bark beetles. In: Lieutier F, Day KR, Battisti A, Grégoire JC, Evans HF (eds) Bark and wood boring insects in living trees in Europe, a synthesis. Springer, Dordrecht, pp 291–313Google Scholar
  60. Wegensteiner R, Dedryver CA, Pierre JS (2010) The comparative prevalence and demographic impact of two pathogens in swarming Ips typographus adults: a quantitative analysis of long term trapping data. Agr Forest Entomol 12:49–57.  https://doi.org/10.1111/j.1461-9563.2009.00449.x CrossRefGoogle Scholar
  61. Wegensteiner R, Tkaczuk C, Bałazy S et al (2015a) Occurrence of pathogens in populations of Ips typographus, Ips sexdentatus (Coleoptera, Curculionidae, Scolytinae) and Hylobius spp. (Coleoptera, Curculionidae, Curculioninae) from Austria, Poland and France. Acta Protozool 54:219–232Google Scholar
  62. Wegensteiner R, Wermelinger B, Herrmann M (2015b) Natural enemies of bark beetles: predators, parasitoids, pathogens, and nematodes. In: Vega FE, Hofstetter RW (eds) Bark beetles - biology and ecology of native and invasive species. Academic press, London, pp 247–304.  https://doi.org/10.1016/B978-0-12-417156-5.00007-1 Google Scholar
  63. Wermelinger B (2004) Ecology and management of the spruce bark beetle Ips typographus – a review of recent research. Forest Ecol Manag 202:67–82.  https://doi.org/10.1016/j.foreco.2004.07.018 CrossRefGoogle Scholar
  64. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  65. Zhang SL, He LM, Chen X, Hueng B (2012) Beauveria lii sp. nov. isolated from Henosepilachna vigintioctopunctata. Mycotaxon 121:199–206.  https://doi.org/10.5248/121.199 CrossRefGoogle Scholar
  66. Zimmermann G (2008) The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol Sci Tech 18:865–901.  https://doi.org/10.1080/09583150802471812 CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Institute of Forest EcologySlovak Academy of SciencesNitraSlovakia
  2. 2.Natural History Museum BratislavaBratislavaSlovakia
  3. 3.Institute of ZoologySlovak Academy of SciencesBratislavaSlovakia
  4. 4.State Forests of TANAPTatranská LomnicaSlovakia
  5. 5.Polymer InstituteSlovak Academy of SciencesBratislavaSlovakia
  6. 6.Central European University in SkalicaSkalicaSlovakia
  7. 7.Scientica s.r.oBratislavaSlovakia

Personalised recommendations