Skip to main content
Log in

Vegetation shift after a clear-cut of non-native dwarf pine (Pinus mugo)

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Dwarf pine (Pinus mugo) is a shrubby, polycormon-forming woody light-demanding species in the Central-European mountains, but it is non-native in the Jeseniky Mts. (the Hercynian Mts., the Czech Republic). Dwarf pine was introduced there at the nineteenth century, and its range expansion was the reason for the removal of this species by a small-scale clear-cut (locality Keprnik Mt.). The effect of the clear-cutting was recorded by means of phytosociological relevés, and three distinct habitats (alpine grasslands, dwarf pine plantation, clear-cut) were compared 6 years after the dwarf pine removal. On the clear-cut area, the highest species diversity was documented, invasive species were missing there, but plant composition remained transitional and expansive graminoids prevailed. Vegetation shifts denoted environmental changes that were attributed to post-management processes and particular plant attributes. That should be taken into account when planning future large-scale management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ballantye M, Pickering CM (2015) Shrub facilitation is an importatnt driver of alpine plant community diversity and functional composition. Biodivers Conserv 24:1859–1875

    Article  Google Scholar 

  • Bílá K, Šipoš J, Kindlmann P, Kuras T (2016) Consequences for selected highelevation butterflies and moths from the spread of Pinus mugo into the alpine zone in the High Sudetes Mountains. PeerJ 4:e2094. https://doi.org/10.7717/peerj.2094

    Article  PubMed  PubMed Central  Google Scholar 

  • Bliss LC (1971) Arctic and alpine plant life cycles. Annu Rev Ecol Syst 2:405–438

    Article  Google Scholar 

  • Businský R (1998) Agregát Pinus mugo v bývalém Československu: taxonomie, rozšíření, hybridní populace a ohrožení. Zprávy Čes Bot Společ 33:29–52

    Google Scholar 

  • Capers RS, Taylor DW (2014) Slow recovery in a Mount Washington, New Hampshire, alpine plant community four years after disturbance. Rhodora 116:1–24

    Article  Google Scholar 

  • Chytrý M, Jarošík V, Pyšek P, Hájek O, Knollová I, Tichý L, Danihelka J (2008) Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89:1541–1553

    Article  PubMed  Google Scholar 

  • Chytrý M, Hejcman M, Hennekens SM, Schellberg J (2009) Changes in vegetation types and Ellenberg indicator values after 65 years of fertilizer application in the Rengen Grassland Experiment. Germany Appl Veg Sci 12:167–176

    Article  Google Scholar 

  • Cuevas YA, Zalba SM (2010) Recovery of native grasslands after removing invasive pines. Restor Ecol 18:711–719

    Article  Google Scholar 

  • de Jong C, Mundelius M, Migała K (2006) Comparison of Evapotranspiration and Condensation Measurements between the Giant Mountains and the Alps. In: de Jong C, Collins D, Ranzi R (eds) Climate and Hydrology in Mountain Areas. John Wiley and Sons, Hoboken, pp 161–183

    Chapter  Google Scholar 

  • Dirnböck T, Dullinger S, Köck R (2008) Organic matter accumulation following Pinus mugo Turra establishment in subalpine pastures. Plant Ecolog Divers 1:59–66

    Article  Google Scholar 

  • Dullinger S, Grabherr G (2003) Patterns of shrub invasion into high mountain grasslands of the northern calcareous Alps, Austria. Arctic, Antarct. Alp Res 35:434–441

    Article  Google Scholar 

  • Ellenberg H (1988) Vegetation ecology of Central Europe. Cambridge University Press, Cambridge, p 731

    Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:1–248

    Google Scholar 

  • Fartmann T, Borcharda F, Buchholz S (2015) Montane heathland rejuvenation by choppering – Effects on vascular plant and arthropod assemblages. J Nat Conserv 28:35–44

    Article  Google Scholar 

  • Grulich V (2012) Red List of vascular plants of the Czech Republic: 3rd edition. Preslia 84:631–645

    Google Scholar 

  • Jeník J (1998) Biodiversity of the Hercynian mountains of central Europe. Pirineos 151–152:83–99

    Article  Google Scholar 

  • Jeník J, Hampel R (1992) Die waldfreien Kammlagen des Altvatergebirges (Geschichte und Ökologie). MSSGV, Stuttgart, p 104

    Google Scholar 

  • Jirásek J (1996) Společenstva kosodřeviny (Pinus mugo) v České republice (Plant communities of Pinus mugo in the Czech Republic). Preslia 68:1–12

    Google Scholar 

  • Kašák J, Mazalová M, Šipoš J, Kuras T (2015) Dwarf pine: invasive plant threatens biodiversity of alpine beetles. Biodivers Conserv 24:2399–2415

    Article  Google Scholar 

  • Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presenceabsence data. J Anim Ecol 72:367–382

    Article  Google Scholar 

  • Kotowski W, Dzierża P, Czerwiński M, Kozub Ł, Śnieg (2013) Shrub removal facilitates recovery of wetland species in a rewetted fen. J Nat Conserv 21:294–308

    Article  Google Scholar 

  • Kubát K, Hrouda L, Chrtek J, Jun KZ, Kirschner J, Štěpánek J (2002) Klíč ke květeně České republiky (The key to flora of the Czech Republic). Academia, Praha, p 927

    Google Scholar 

  • Kueffer C, McDougall K, Alexander J, Daehler C, Edwards P, Haider S, Milbau A, Parks C, Pauchard A, Reshi ZA, Rew LJ, Schroder M, Seipel T (2013) Plant invasions into mountain protected areas: assessment, prevention and control at multiple spatial scales. In: Foxcroft LC, Pyšek P, Richardson DM, Genovesi P (eds) Plant invasions in protected areas. Patterns, problems and challenges. Springer, Dordrecht, pp 89–116

    Chapter  Google Scholar 

  • Larcher W, Kainmüller C, Wagner J (2010) Survival types of high mountain plants under extreme temperatures. Flora 205:3–18

    Article  Google Scholar 

  • Medvecká J, Jarolímek I (2010) Level of invasion across habitats in Slovakia. In: Kollman J, van Mölken T, Ravn HP (eds) Biological invasions in a changing world from science to management. Neobiota. Department of Agriculture & Ecology. University of Copenhagen, Copenhagen, p 107

    Google Scholar 

  • Mitchell RJ, Zutter BR, Gjerstad DH, Glover GR, Wood CW (1999) Competition among secondarysuccessional pine communities: a field study of effects and responses. Ecology 80:857–872

    Article  Google Scholar 

  • Mondoni A, Robin J, Probert RJ, Rossi G, Vegini E, Hay FR (2011) Seeds of alpine plants are short lived: implications for longterm conservation. Ann Bot 107:171–179

    Article  PubMed  Google Scholar 

  • Münzbergová M, Herben T (2005) Seed, dispersal, microsite, habitat and recruitment limitation: identification of terms and concepts in studies of limitation. Oecologia 145:1–8

    Article  PubMed  Google Scholar 

  • Nagy L, Grabherr G (2009) The biology of alpine habitats. Oxford University Press, Oxford, p 376

    Google Scholar 

  • Oostra S, Majdi H, Olsson M (2006) Impact of tree species on soil carbon stocks and soil acidity in southern Sweden. Scand J For Res 21:364–371

    Article  Google Scholar 

  • Pašťálková H, Podrázský V, Vacek S (2001) Soils in the dwarf pine altitudinal zone of the Giant Mts. Opera Corcontica 38:205–215

    Google Scholar 

  • Prach K (2003) Spontaneous succession in CentralEuropean manmade habitats: what information can be used in restoration practice? Appl Veg Sci 6:125–129

    Article  Google Scholar 

  • Pyšek P (1993) What do we know about Calamagrostis villosa? A review of the species behaviour in secondary habitats. Preslia 65:1–20

    Google Scholar 

  • R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 15 May 2016

  • Rehm EM, Feeley KJ (2013) Forest patches and the upward migration of timberline in the southern Peruvian Andes. For Ecol Manag 305:204–211

    Article  Google Scholar 

  • Richardson DM, Rundel PW (1998) Ecology and biogeography of Pinus : an introduction. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 3–48

    Google Scholar 

  • Rybníček K, Rybníčková E (2004) Pollen analyses of sediments from the summit of the Praděd range in the Hrubý Jeseník Mts (Eastern Sudetes). Preslia 76:331–347

    Google Scholar 

  • Sekyra J, Kociánová M, Štursová H, Kalenská J, Dvořák I, Svoboda M (2002) Frost phenomena in relationship to mountain pine. Opera Corcontica 39:69–114

    Google Scholar 

  • Šenfeldr M, Treml V, Maděra P, Volařík D (2014) Effects of prostrate dwarf pine on norway spruce clonal groups in the treeline ecotone of the Hrubý Jeseník Mountains, the Czech Republic. Arct Antarct Alp Res 46:430–440

    Article  Google Scholar 

  • Shiels AB, Sanford RD Jr (2001) Soil nutrient differences between two krummholzform tree species and adjacent alpine tundra. Geoderma 102:205–217

    Article  CAS  Google Scholar 

  • Šibík J, Dítě D, Šibíková I, Pukajová D (2008) Plant communities dominated by Pinus mugo agg. in Central Europe comparison of the oligotrophic communities rich in Sphagnum. Phytocoenologia 38:221–238

    Article  Google Scholar 

  • Šibík J, Šibíková I, Kliment J (2010) The subalpine Pinus mugo communities of the Carpathians with a European perspective. Phytocoenologia 40:155–188

    Article  Google Scholar 

  • Siemann E, Rogers WE (2003) Changes in light and nitrogen availability under pioneer trees may indirectly facilitate tree invasions of grasslands. J Ecol 91:923–931

    Article  Google Scholar 

  • Skalický V (2000) Pinus mugo Turra. In: Hejný S, Slavík B (eds) Květena České republiky 1 (Flora of the Czech republic 1). Academia, Praha, pp 294–296

    Google Scholar 

  • Smart SM, Scott WA (2004) Bias in Ellenberg indicator values problems with detection of the effect of vegetation type. J Veg Sci 15:843–846

    Google Scholar 

  • Soukupová L, Jeník J, Frantík T (2001) Edge effect of krummholz in the Giant Mts. tundra, the Sudetes. Opera Corcontica 38:77–87

    Google Scholar 

  • Švajda J, Solár J, Janiga M, Buliak M (2011) Dwarf pine (Pinus mugo) and selected abiotic habitat conditions in the Western Tatra Mountains. Mt Res Dev 31:220–228

    Article  Google Scholar 

  • Svoboda M (2001) The effects of Pinus mugo (Turra) plantations on alpine tundra microclimate, vegetation distribution, and soils in Krkonoše national park, the Czech Republic. Opera Corcontica 38:189–206

    Google Scholar 

  • Taschler D, Neuner G (2004) Summer frost resistance and freezing patterns measured in situ in leaves of major alpine plant growth forms in relation to their upper distribution boundary. Plant Cell Environ 27:737–746

    Article  Google Scholar 

  • Ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, p 500

    Google Scholar 

  • Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453

    Article  Google Scholar 

  • Treml V, Křížek M (2006) Effects of dwarf pine (Pinus mugo) on patterned ground in the Czech part of the High Sudetes. Opera Corcontica 43:45–56

    Google Scholar 

  • Treml V, Křížek M, Engel Z (2010a) Classification of patterned ground based on morphometry and site characteristics: a case study from the High Sudetes, Central Europe. Permafr Periglac 21:67–77

    Article  Google Scholar 

  • Treml V, Wild J, Chuman T, Potůčková M (2010b) Assessing the change in cover of nonindigenous dwarfpine using aerial photographs, a case study from the Hrubý Jeseník Mts., the Sudetes. J Land Ecol 4:90–104

    Google Scholar 

  • van der Maarel E (1993) Relations between sociologicalecological species groups and Ellenberg indicator values. Physiol 23:343–362

    Google Scholar 

  • Wagnerová Z (2001) Influence of the dwarf pine plantations (of the age 20, 40, 60 and 90 years) on the vegetation cover. Opera Corcontica 38:163–170

    Google Scholar 

  • Wild J, Wildová R (2002) Interactions between dwarf pine shrubs and grassland vegetation under different management. Opera Corcontica 39:17–33

    Google Scholar 

  • Zeidler M, Banaš M, Ženatá M (2009) Ecological conditions and the distribution of alpine juniper (Juniperus communis subsp. alpina) in the Hrubý Jeseník Mts. Biologia 64:687–693

    Article  Google Scholar 

  • Zeidler M, Duchoslav M, Banaš M, Lešková M (2012) Impacts of introduced dwarf pine (Pinus mugo) on the diversity and composition of alpine vegetation. Community Ecol 13:213–220

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants No. SPII2d1/49/07 of the Ministry of the Environment of the Czech Republic and final completion by project of Palacký University in Olomouc IGA_PrF_2017_015. The anonymous reviewer is acknowledged for its advises and comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Zeidler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeidler, M., Hertlová, B., Banaš, M. et al. Vegetation shift after a clear-cut of non-native dwarf pine (Pinus mugo). Biologia 73, 113–119 (2018). https://doi.org/10.2478/s11756-017-0002-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-017-0002-5

Keywords

Navigation