Skip to main content
Log in

Vapour permeation and sorption in fluoropolymer gel membrane based on ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulphonyl)imide

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The emissions of hydrocarbons from fossil fuels into atmosphere entail both an economic loss and an environmental pollution. Membrane separations can be used for vapour recovery and/or vapour removal from the permanent gas stream, given that the appropriate membrane is identified. A neat poly(vinylidene fluoride-co-hexafluoropropylene) membrane is impermeable to both the representatives of aliphatic hydrocarbons and branched hydrocarbons, namely hexane and isooctane, whereas the permeation flux is enhanced by the presence of 80 mass % of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulphonyl)imide in the membrane, as detailed in this work. The permeabilities of hydrocarbon vapours were determined from the binary mixture containing hydrocarbon and nitrogen to simulate the real input of an air stream containing a condensable hydrocarbon. The diffusion coefficient determined from sorption measurements was higher for hexane, as would be expected for a smaller molecule, whereas both the sorption isotherms and permeabilities of the hydrocarbons studied were found to be almost identical. It is possible that the sorption effect predominates in the transport mechanism for VOCs/N2 separations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, R. W. (2002). Future directions of membrane gas separation technology. Industrial & Engineering Chemistry Research, 41, 1393–1411. DOI: 10.1021/ie0108088.

    Article  CAS  Google Scholar 

  • Baker, R. W. (2004). Membrane technology and applications (2nd ed.). Chichester, UK: Wiley.

    Book  Google Scholar 

  • Bernardo, P., Drioli, E., & Golemme, G. (2009). Membrane gas separation: A review/state of the art. Industrial & Engineering Chemistry Research, 48, 4638–4663. DOI: 10.1021/ie8019032.

    Article  CAS  Google Scholar 

  • Bodzek, M. (2000). Membrane techniques in air cleaning. Polish Journal of Environmental Studies, 9, 1–12.

    CAS  Google Scholar 

  • Crank, J. (1975). The mathematics of diffusion (2nd ed.). Oxford, UK: Clarendon Press.

    Google Scholar 

  • de los Ríos, A. P., Hernández-Fernández, F. J., Tomás-Alonso, F., Palacios, J. M., & Víllora, G. (2009). Stability studies of supported liquid membranes based on ionic liquids: Effect of surrounding phase nature. Desalination, 245, 776–782. DOI: 10.1016/j.desal.2009.02.051.

    Article  Google Scholar 

  • Dytrych, P., Kluson, P., Dzik, P., Vesely, M., Morozova, M., Sedlakova, Z., & Solcova, O. (2014). Photo-electrochemical properties of ZnO and TiO2 layers in ionic liquid environment. Catalysis Today, 230, 152–157. DOI: 10.1016/j.cattod.2013.10.048.

    Article  CAS  Google Scholar 

  • Favre, E., Clément, R., Nguyen, Q. T., Schaetzel, P., & Néel, J. (1993). Sorption of organic solvents into dense silicone membranes. Part 2.—Development of a new approach based on a clustering hypothesis for associated solvents. Journal of the Chemical Society, Faraday Transactions, 89, 4347–4353. DOI: 10.1039/ft9938904347.

    Article  CAS  Google Scholar 

  • Friess, K., Jansen, J. C., Vopička, O., Randová, A., Hynek, V., Šípek, M., Bartovská, L., Izák, P., Dingemans, M., Dewulf, J., Van Langenhove, H., & Drioli, E. (2009). Comparative study of sorption and permeation techniques for the determination of heptane and toluene transport in polyethylene membranes. Journal of Membrane Science, 338, 161–174. DOI: 10.1016/j.memsci.2009.04.030.

    Article  CAS  Google Scholar 

  • Friess, K., Jansen, J. C., Bazzarelli, F., Izák, P., Jarmarová, V., Kačírková, M., Schauer, J., Clarizia, G., & Bernardo, P. (2012). High ionic liquid content polymeric gel membranes: Correlation of membrane structure with gas and vapour transport properties. Journal of Membrane Science, 415–416, 801–809. DOI: 10.1016/j.memsci.2012.05.072.

    Article  Google Scholar 

  • Funke, H. H., Kovalchick, M. G., Falconer, J. L., & Noble R. D. (1996). Separation of hydrocarbon isomer vapors with silicalite zeolite membranes. Industrial & Engineering Chemistry Research, 35, 1575–1582. DOI: 10.1021/ie950495e.

    Article  CAS  Google Scholar 

  • He, X. Z., & Hägg, M. B. (2012). Membranes for environmentally friendly energy processes. Membranes, 2, 706–726. DOI: 10.3390/membranes2040706.

    Article  CAS  Google Scholar 

  • Jansen, J. C., Clarizia, G., Bernardo, P., Bazzarelli, F., Friess, K., Randová, A., Schauer, J., Kubicka, D., Kacirková, M., & Izak, P. (2013). Gas transport properties and pervaporation performance of fluoropolymer gel membranes based on pure and mixed ionic liquids. Separation and Purification Technology, 109, 87–97. DOI: 10.1016/j.seppur.2013.02.034.

    Article  CAS  Google Scholar 

  • Jansen, J. C., Friess, K., Clarizia, G., Schauer, J., & Izák, P. (2011). High ionic liquid content polymeric gel membranes: Preparation and performance. Macromolecules, 44, 39–45. DOI: 10.1021/ma102438k.

    Article  CAS  Google Scholar 

  • Kim, H. J., Nah, S. S., & Min, B. R. (2002). A new technique for preparation of PDMS pervaporation membrane for VOC removal. Advances in Environmental Research, 6, 255–264. DOI: 10.1016/s1093-0191(01)00056-9.

    Article  CAS  Google Scholar 

  • Krull, F. F., Fritzmann, C., & Melin, T. (2008). Liquid membranes for gas/vapor separations. Journal of Membrane Science, 325, 509–519. DOI: 10.1016/j.memsci.2008.09.018.

    Article  CAS  Google Scholar 

  • Lide, D. R. (2003). Handbook of chemistry and physics (84th ed.). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Liu, Y. J., Feng, X., & Lawless, D. (2006). Separation of gasoline vapor from nitrogen by hollow fiber composite membranes for VOC emission control. Journal of Membrane Science, 271, 114–124. DOI: 10.1016/j.memsci.2005.07.012.

    Article  CAS  Google Scholar 

  • Liu, L., Chakma, A., Feng, X. S., & Lawless, D. (2009). Separation of VOCs from N2 using poly(ether block amide) membranes. The Canadian Journal of Chemical Engineering, 87, 456–465. DOI: 10.1002/cjce.20181.

    Article  CAS  Google Scholar 

  • Lozano, L. J., Godínez, C., de los Ríos, A. P., Hernández-Fernández, F. J., Sánchez-Segado, S., & Alguacil, F. J. (2011). Recent advances in supported ionic liquid membrane technology. Journal of Membrane Science, 376, 1–14. DOI: 10.1016/j.memsci.2011.03.036.

    Article  CAS  Google Scholar 

  • Majumdar, S., Bhaumik, D., & Sirkar, K. K. (2003). Performance of commercial-size plasmapolymerized PDMS-coated hollow fiber modules in removing VOCs from N2/air. Journal of Membrane Science, 214, 323–330. DOI: 10.1016/s0376-7388(02)00545-8.

    Article  CAS  Google Scholar 

  • Matsumoto, M., Ueba, K., & Kondo, K. (2009). Vapor permeation of hydrocarbons through supported liquid membranes based on ionic liquids. Desalination, 241, 365–371. DOI: 10.1016/j.desal.2007.11.090.

    Article  CAS  Google Scholar 

  • Nosrati, S., Jayakumar, N. S., & Hashim, M. A. (2011). Performance evaluation of supported ionic liquid membrane for removal of phenol. Journal of Hazardous Materials, 192, 1283–1290. DOI: 10.1016/j.jhazmat.2011.06.037.

    Article  CAS  Google Scholar 

  • Pereiro, A. B., Araújo, J. M. M., Esperança, J. M. S. S., Marrucho, I. M., & Rebelo, L. P. N. (2012). Ionic liquids in separations of azeotropic systems - A review. Journal of Chemical Thermodynamics, 46, 2–28. DOI: 10.1016/j.jct.2011.05.026.

    Article  CAS  Google Scholar 

  • Rebollar-Perez, G., Carretier, E., Lesage, N., & Moulin, P. (2011). Volatile organic compound (VOC) removal by vapor permeation at low VOC concentrations: Laboratory scale results and modeling for scale up. Membranes, 1, 80–90. 10.3390/membranes1010080.

    Article  CAS  Google Scholar 

  • Seber, G. A. F., & Wild, C. J. (2003). Nonlinear regression. Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Sedláková, Z., & Wagner, Z. (2012). High-pressure phase equilibria in systems containing CO2 and ionic liquid of the [Cnmim][Tf2N] type. Chemical & Biochemical Engineering Quarterly, 26, 55–60.

    Google Scholar 

  • Sedláková, Z., Clarizia, G., Bernardo, P., Jansen, J. C., Slobodian, P., Svoboda, P., Kárászová, M., Friess, K., & Izák, P. (2014). Carbon nanotube- and carbon fiber-reinforcement of ethylene-octene copolymer membranes for gas and vapor separation. Membranes, 4, 20–39. DOI: 10.3390/membranes4010020.

    Article  Google Scholar 

  • Semenova, S. I. (2004). Polymer membranes for hydrocarbon separation and removal. Journal of Membrane Science, 231, 189–207. DOI: 10.1016/j.memsci.2003.11.022.

    Article  CAS  Google Scholar 

  • Sohn, W. I., Ryu, D. H., Oh, S. J., & Koo, J. K. (2000). A study on the development of composite membranes for the separation of organic vapors. Journal of Membrane Science, 175, 163–170. DOI: 10.1016/s0376-7388(00)00417-8.

    Article  CAS  Google Scholar 

  • Vopička, O., Hynek, V., Zgažar, M., Friess, K., & Šípek, M. (2009a). A new sorption model with a dynamic correction for the determination of diffusion coefficients. Journal of Membrane Science, 330, 51–56. DOI: 10.1016/j.memsci.2008.12.037.

    Article  Google Scholar 

  • Vopička, O., Hynek, V., Friess, K., Šípek, M., & Sysel, P. (2009b). A device for determination of vapor sorption in polymers. Chemické Listy, 103, 310–314.

    Google Scholar 

  • Vopička, O., Hynek, V., & Rabová, V. (2010a). Measuring the transient diffusion of vapor mixtures through dense membranes. Journal of Membrane Science, 350, 217–225. DOI: 10.1016/j.memsci.2009.12.031.

    Article  Google Scholar 

  • Vopička, O., Hynek, V., Friess, K., & Izák, P. (2010b). Blended silicone-ionic liquid membranes: Transport properties of butan-1-ol vapor. European Polymer Journal, 46, 123–128. DOI: 10.1016/j.eurpolymj.2009.10.011.

    Article  Google Scholar 

  • Vopička, O., Friess, K., Hynek, V., Sysel, P., Zgažar, M., Šípek, M., Pilnáček, K., Lanč, M., Jansen, J. C., Mason, C. R., & Budd, P. M. (2013). Equilibrium and transient sorption of vapours and gases in the polymer of intrinsic microporosity PIM-1. Journal of Membrane Science, 434, 148–160 DOI: 10.1016/j.memsci.2013.01.040.

    Article  Google Scholar 

  • Zhao, K., Xiu, G. L., Xu, L. H., Zhang, D., Zhang, X. F., & Deshusses, M. A. (2011). Biological treatment of mixtures of toluene and n-hexane vapours in a hollow fibre membrane bioreactor. Environmental Technology, 32, 617–623. DOI: 10.1080/09593330.2010.507634.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Sedláková.

Additional information

Dedicated to the memory of professor Elemír Kossaczký

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morávková, L., Vopička, O., Vejražka, J. et al. Vapour permeation and sorption in fluoropolymer gel membrane based on ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulphonyl)imide. Chem. Pap. 68, 1739–1746 (2014). https://doi.org/10.2478/s11696-014-0623-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0623-x

Keywords

Navigation