Skip to main content

Advertisement

Log in

Synthesis by UV-curing and characterisation of polyurethane acrylate-lithium salts-based polymer electrolytes in lithium batteries

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

UV-cured caprolactone-based polyurethane acrylate (PUA) polymer blend electrolytes were prepared and characterised. To develop polymer electrolytes suited to ambient temperature, an ionically-conductive and reliable polymer electrolyte based on urethane acrylate resins synthesised from a fluorine-containing di-functional oligomer 6F ethoxylated diacrylate, a di-functional reactive diluent 1,6-hexanediol diacrylate for adjusting the viscosity, and a radical photo-initiator doped with a mixture of lithium salts were used. Free-standing flexible electrolyte films were prepared by UV-curing via free-radical photopolymerisation. The performance of the lithium polymer cell system (Li/PE(F4)/LiCoO2) was determined by electrochemical impedance spectroscopy, cyclic voltammetry, a galvanostatic recurrent differential pulse, chronocoulometry and chronoamperometry. The electrolyte with optimal amounts of fluorine-containing oligomer and optimal salt mixture content exhibited enhanced conductivity, showing a conductivity of 1.00 × 10−4 S cm−1 at ambient temperature. The specific capacity, specific energy and specific power of a Li/PE(F4)/LiCoO2 cell were also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, M. A., Ooi, T. L., Salmiah, A., Ishiaku, U. S., & Ishak, Z. A. M. (2001). New polyester acrylate resins from palm oil for wood coating application. Journal of Applied Polymer Science, 79, 2156–2163. DOI: 10.1002/1097-4628(20010321)79:12〈2156::aıd-app1023〉3.0.co;2-k.

    Article  CAS  Google Scholar 

  • Armarego, W. L. F., & Perin, D. D. (2002). Purification of laboratory chemicals, 4th ed. Oxford, UK: Heinemann.

    Google Scholar 

  • Athawale, V. D., & Raut, S. S. (2002). New interpenetrating polymer networks based on uralkyd/poly(glycidyl methacrylate). European Polymer Journal, 38, 2033–2040. DOI: 10.1016/s0014-3057(02)00098-8.

    Article  CAS  Google Scholar 

  • Besenhard, J. O., & Winter, M. (2002). Advances in battery technology: Rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. ChemPhysChem, 3, 155–159. DOI: 10.1002/1439-7641(20020215)3:2〈155::ald-cphc155〉3.0.co;2-s.

    Article  CAS  Google Scholar 

  • Cowie, J. M. G., & Spence, G. H. (1998). Ion conduction in macroporous polyethylene film doped with electrolytes. Solid State Ionics, 109, 139–144. DOI: 10.1016/s0167-2738(98)00004-6.

    Article  CAS  Google Scholar 

  • de Zea Bermudez, V., Alcácer, L., Acosta, J. L., & Morales, E. (1999). Synthesis and characterization of novel urethane cross-linked ormolytes for solid-state lithium batteries. Solid State Ionics, 116, 197–209. DOI: 10.1016/s0167-2738(98)00346-4.

    Article  Google Scholar 

  • Dérand, H., Wesslén, B., & Mellander, B. E. (1998). Ionic conductivity and dielectric propertiesof poly(ethylene oxide) graft copolymersend-capped with sulfonic acid. Electrochimica Acta, 43, 1525–1531. DOI: 10.1016/s0013-4686(97)10095-0.

    Article  Google Scholar 

  • Flåtten, A., Bryhni, E. A., Kohler, A., Bjørg, E., & Isaksson, T. (2005). Determination of C22:5 and C22:6 marine fatty acids in pork fat with Fourier transform midinfrared spectroscopy. Meat Science, 69, 433–440. DOI: 10.1016/j.meatsci.2004.10.002.

    Article  Google Scholar 

  • Garino, N., Zanarini, S., Bodoardo, S., Nair, J. R., Pereira, S., Pereira, L., Martins, R., Fortunato, E., & Penazzi, N. (2013). Fast switching electrochromic devices containing optimized BEMA/PEGMA gel polymer electrolytes. International Journal of Electrochemistry, 2013, 1–10. DOI: 10.1155/2013/138753.

    Article  Google Scholar 

  • Gerbaldi, C., Nair, J. R., Meligrana, G., Bongiovanni, R., Bodoardo, S., & Penazzi, N. (2009). Highly ionic conducting methacrylic-based gel-polymer electrolytes by UV-curing technique. Journal of Applied Electrochemistry, 39, 2199–2207. DOI: 10.1007/s10800-009-9805-6.

    Article  CAS  Google Scholar 

  • Gerbaldi, C., Nair, J. R., Meligrana, G., Bongiovanni, R., Bodoardo, S., & Penazzi, N. (2010). UV-curable siloxane-acrylate gel-copolymer electrolytes for lithium-based battery applications. Electrochimica Acta, 55, 1460–1467. DOI: 10.1016/j.electacta.2009.05.055.

    Article  CAS  Google Scholar 

  • Gite, V. V., Mahulikar, P. P., & Hundiwale, D. G. (2010). Preparation and properties of polyurethane coatings based on acrylic polyols and trimer of isophorone diisocyanate. Progress in Organic Coatings, 68, 307–312. DOI: 10.1016/j.porgcoat.2010.03.008.

    Article  CAS  Google Scholar 

  • Gunduz, N. (1998). Synthesis and photopolymerization of nobel dimethacrylates, Master of Science in Chemistry, dissertation. Blacksburg, VA, USA: Virginia Polytechnic Institute and State University.

    Google Scholar 

  • Imperiyka, M., Ahmad, A., Hanifah, S.A., & Rahman, M. Y. A. (2013). Potential of UV-curable poly(glycidyl methacrylate-co-ethyl methacrylate)-based solid polymer electrolyte for lithium ıon battery application. International Journal of Electrochemical Science, 8, 10932–10945.

    CAS  Google Scholar 

  • Jia, C. K., Liu, J. G., & Yan, C.W. (2012). A multilayered membrane for vanadium redox flow battery. Journal of Power Sources, 203, 190–194. DOI: 10.1016/j.jpowsour.2011.10.102.

    Article  CAS  Google Scholar 

  • Johnson, L. G., Allie, L. A., & Muller, J. R. (2013). U.S. Patent No. 20130011745. Washington, D.C.: U.S. Patent and Trademark Office.

  • Kang, Y. K., Cheong, K. J., Noh, K. A., Lee, C. J., & Seung, D. Y. (2003). A study of cross-linked PEO gel polymer electrolytes using bisphenol A ethoxylate diacrylate: Ionic conductivity and mechanical properties. Journal of Power Sources, 119–121, 432–437. DOI: 10.1016/s0378-7753(03)00183-6.

    Article  Google Scholar 

  • Kawaguchi, M., Fukushima, T., Miyazaki, K., Horibe, T., Habe, T., Sawamaura, N., & Nagaoka, K. (1983). Synthesis and physical properties of polyfunctional methacrylates: Part II. Physical properties of 2,2-bis (4-methacryloxy cyclohexyl) propane and methyl methacrylate copolymers. Journal of the Japanese Society for Dental Materials and Devices, 2, 298–301.

    CAS  Google Scholar 

  • Kayaman-Apohan, N., Demirci, R., Çakır, M., & Gungor, A. (2005). UV-curable interpenetrating polymer networks based on acrylate/vinylether functionalized urethane oligomers. Radiation Physics and Chemistry, 73, 254–262. DOI: 10.1016/j.radphyschem.2004.09.026.

    Article  CAS  Google Scholar 

  • Kil, E. H., Choi, K. H., Ha, H. J., Xu, S., Rogers, J. A., Kim, M. R., Lee, Y. G., Kim, K. M., Cho, K. Y., & Lee, S. Y. (2013). Imprintable, bendable and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries. Advanced Materials, 25, 1395–1400. DOI: 10.1002/adma.201204182.

    Article  CAS  Google Scholar 

  • Lin, S. B., Tsay, S. Y., Speckhard, T. A., Hwang, K. K. S., Jezerc, J. J., & Cooper, S. L. (1984). Properties of UV-cured polyurethane acrylates: Effect of polyol type and molecular weight. Chemical Engineering Communications, 30, 251–273. DOI: 10.1080/00986448408911131.

    Article  CAS  Google Scholar 

  • MacCallum, J. R., Tomlin, A. S., & Vincent, C. A. (1986). An investigation of the conducting species in polymer electrolytes. European Polymer Journal, 22, 787–791. DOI: 10.1016/0014-3057(86)90017-0.

    Article  CAS  Google Scholar 

  • Morales, E., & Acosta, J. L. (1999). Synthesis and characterization of poly(methylalkoxysiloxane) solid polymer electrolytes incorporating different lithium salts. Electrochimica Acta, 45, 1049–1056. DOI: 10.1016/s0013-4686(99)00300-x.

    Article  CAS  Google Scholar 

  • Oh, B., Jung, W. I., Kim, D. W., & Rhee, H. W. (2002). Preparation of UV curable gel polymer electrolytes and their electrochemical properties. Bulletin of the Korean Chemical Society, 23, 683–687.

    Article  CAS  Google Scholar 

  • Onishi, K., Matsumoto, M., Nakacho, Y., & Shigehara, K. (1996). Synthesis of aluminate polymer complexes as singleıonic solid electrolytes. Chemistry of Materials, 8, 469–472. DOI: 10.1021/cm950388a.

    Article  CAS  Google Scholar 

  • Panchal, P. C., & Patel, H. S. (2013). Hybrid UV-curable poly(urethane acrylate)s surface coatings using coconut oil based alkyd resin. Der Chemica Sinica, 4, 52–57.

    Google Scholar 

  • Papke, B. L., Ratner, M. A., & Shriver, D. F. (1982). Conformation and ion-transport models for the structure and ionic conductivity in complexes of polyethers with alkali metal salts. Journal of the Electrochemical Society, 129, 1694–1701. DOI: 10.1149/1.2124252.

    Article  CAS  Google Scholar 

  • Şabani, S., Önen, A. H., & Güngör, A. (2012). Preparation of hyperbranched polyester polyol-based urethane acrylates and applications on UV-curable wood coatings. Journal of Coatings Technology and Research, 9, 703–716. DOI: 10.1007/s11998-012-9418-6.

    Article  Google Scholar 

  • Santhosh, P., Vasudevan, T., Gopalan, A., & Lee, K. P. (2006). Preparation and properties of new cross-linked polyurethane acrylate electrolytes for lithium batteries. Journal of Power Sources, 160, 609–620. DOI: 10.1016/j.jpowsour.2006.01.091.

    Article  CAS  Google Scholar 

  • Scrosati, B. (1993). Applications of electroactive polymers. London, UK: Chapman and Hall.

    Book  Google Scholar 

  • Scrosati, B. (1995). Challenge of portable power. Nature, 373, 557–558. DOI: 10.1038/373557a0.

    Article  CAS  Google Scholar 

  • Seo, J. C., Jang, E. S., Song, J. H., Choi, S. H., Khan, S. B., & Han, H. S. (2010). Preparation and properties of poly(urethane acrylate) films for ultraviolet-curable coatings. Journal of Applied Polymer Science, 118, 2454–2460. DOI: 10.1002/app.32344.

    CAS  Google Scholar 

  • Shibata, M., Kobayashi, T., Yosomiya, R., & Seki, M. (2000). Polymer electrolytes based on blends of poly(ether urethane) and polysiloxanes. European Polymer Journal, 36, 485–490. DOI: 10.1016/s0014-3057(99)00101-9.

    Article  CAS  Google Scholar 

  • Silva, M. M., Barros, S. C., Smith, M. J., & MacCallum, J. R. (2002). Study of novel lithium salt-based, plasticized polymer electrolytes. Journal of Power Sources, 111, 52–57. DOI: 10.1016/s0378-7753(02)00229-x.

    Article  CAS  Google Scholar 

  • Siska, D. P., & Shriver, D. F., (2001). Li+ conductivity of polysiloxane-trifluoromethylsulfonamide polyelectrolytes. Chemistry of Materials, 13, 4698–4700. DOI: 10.1021/cm000420n.

    Article  CAS  Google Scholar 

  • Sultan, M., Zia, K. M., Bhatti, H. N., Jamil, T., Hussain, R., & Zuber, M. (2012). Modification of cellulosic fiber with polyurethane acrylate copolymers. Part I: Physicochemical properties. Carbohydrate Polymers, 87, 397–404. DOI: 10.1016/j.carbpol.2011.07.070.

    Article  CAS  Google Scholar 

  • Tabasum, S., Zuber, M., Jabbar, A., & Zia, K. M. (2013). Properties of the modified cellulosic fabrics using polyurethane acrylate copolymers. Carbohydrate Polymers, 94, 866–873. DOI: 10.1016/j.carbpol.2013.01.087.

    Article  CAS  Google Scholar 

  • Uğur, M. H., Toker, R. D., Kayaman-Apohan, N., & Güngör, A. (2014). Preparation and characterization of novel thermoset polyimide and polyimide-peo doped with LiCF3SO3. eXPRESS Polymer Letters, 8, 123–132. DOI: 10.3144/expresspolymlett.2014.15.

    Google Scholar 

  • Xu, W., Belieres, J. P., & Angell, C. A. (2001). Ionic conductivity and electrochemical stability of poly[oligo(ethylene glycol)oxalate]-lithium salt complexes. Chemistry of Materials, 13, 575–580. DOI: 10.1021/cm000694a.

    Article  CAS  Google Scholar 

  • Yang, Z. G., Zhang, J. L., Kinter-Meyer, M. C. W., Lu, X. C., Choi, D. W., Lemmon, J. P., & Liu, J. (2011). Electrochemical energy storage for green grid. Chemical Reviews, 111, 3577–3613. DOI: 10.1021/cr100290v.

    Article  CAS  Google Scholar 

  • Yildiz, E., Güngör, A., Yildirim, H., & Baysal, B. M. (1995). Synthesis and characterization of UV curable acrylated urethane prepolymers, II. Effects of various diacrylates as diluents and relative humidity on mechanical properties of TDI/PEG/HEMA-based polymeric films. Die Angewandte Makromolekulare Chemie, 233, 33–45. DOI: 10.1002/apmc.1995.052330104.

    Article  CAS  Google Scholar 

  • Zhang, S. S., Xu, K., & Jow, T. R. (2002). A new approach toward improved low temperature performance of Li-ion battery. Electrochemistry Communications, 4, 928–932. DOI: 10.1016/s1388-2481(02)00490-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atilla Güngör.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugur, M.H., Kılıç, H., Berkem, M.L. et al. Synthesis by UV-curing and characterisation of polyurethane acrylate-lithium salts-based polymer electrolytes in lithium batteries. Chem. Pap. 68, 1561–1572 (2014). https://doi.org/10.2478/s11696-014-0611-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0611-1

Keywords

Navigation