Skip to main content
Log in

Application of positron emission tomography and 2-[18F]fluoro-2-deoxy-d-glucose for visualization and quantification of solute transport in plant tissues

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The aim of the presented work was to evaluate the uptake and distribution of 2-fluoro-2-deoxy-d-glucose spiked with 18F (2-[18F]FDG) in tissues of tobacco plants (Nicotiana tabacum L.) by positron emission tomography and multivariate data analysis after the immersion of the petiole of excised leaf or root of a tobacco plant in a glucose solution. From individual experiments it was found that increasing glucose concentration (c glu) in the applied solution resulted in significantly higher 2-[18F]FDG diffusion and translocation within the leaf parenchyma. More than a four times increase of the 2-[18F]FDG translocation into the aboveground parts of the tobacco plant in case of the root immersion in solution with 100-times higher c glu in comparison with the control (c glu = 0.00762 mg cm−3) was determined. These facts were not confirmed only visually on basis of the obtained 3D images, but also by the increasing coincidence transfer factor (TFc) values defined by the ratio of the number of analyzed coincidences in the non-immersed parts of leaf or plant to coincidences in leaf petiole or root immersed in the solution. Cluster and principal component analysis suggest that the 2-[18F]FDG uptake by the petiole of excised leaf and root system was realized by different mechanisms; also, the 3D image quality is influenced by the initial radioactivity of the applied solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexoff, D. L., Dewey, S. L., Vaska, P., Krishnamoorthy, S., Ferrieri, R., Schueller, M., Schlyer, D. J., & Fowler, J. S. (2011). PET imaging of thin objects: measuring the effects of positron range and partial-volume averaging in the leaf of Nicotiana tabacum. Nuclear Medicine and Biology, 38, 191–200. DOI: 10.1016/j.nucmedbio.2010.08.004.

    Article  CAS  Google Scholar 

  • Beer, S., Streun, M., Hombach, T., Buehler, J., Jahnke, S., Khodaverdi, M., Larue, H., Minwuyelet, S., Parl, C., Roeb, G., Schurr, U., & Ziemons, K. (2010). Design and initial performance of PlanTIS: a high-resolution positron emission tomography for plants. Physics in Medicine and Biology, 55, 635–646. DOI: 10.1088/0031-9155/55/3/006.

    Article  CAS  Google Scholar 

  • Bughio, N., Nakanishi, H., Kiyomiya, S., Matsuhashi, S., Ishioka, N. S., Watanabe, S., Uchida, H., Tsuji, A., Osa, A., Kume, T., Hashimoto, S., Sekine, T., & Mori, S. (2001). Real-time [11C]methionine translocation in barley in relation to mugineic acid phytosiderophore biosynthesis. Planta, 213, 708–715. DOI: 10.1007/s004250100552.

    Article  CAS  Google Scholar 

  • Bühler, J., Huber, G., Schmid, F., & Blümler, P. (2011). Analytical model for long-distance tracer-transport in plants. Journal of Theoretical Biology, 270, 70–79. DOI: 10.1016/j.jtbi.2010.11.005.

    Article  Google Scholar 

  • Butorac, J., Mustapić, Z., & Beljo, J. (1995). Major morphological properties of the leaf of some Burley tobacco genotypes. Die Bodenkultur, 46, 321–329.

    Google Scholar 

  • Converse, A. K., Ahlers, E. O., Bryan, T. W., Williams, P. H., Barnhart, T. E., Engle, J.W., Nickles, R. J., & DeJesus, O. T. (2013). Positron emission tomography (PET) of radiotracer uptake and distribution in living plants: methodological aspects. Journal of Radioanalytical and Nuclear Chemistry, 297, 241–246. DOI: 10.1007/s10967-012-2383-9.

    Article  CAS  Google Scholar 

  • De Schepper, V., Bühler, J., Thorpe, M., Roeb, G., Huber, G., van Dusschoten, D., Jahnke S., & Steppe, K. (2013). 11CPET imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling. Frontiers in Plant Science, 4, 200. DOI: 10.3389/fpls.2013.00200.

    Article  Google Scholar 

  • Ferrieri, A. P., Appel, H., Ferrieri, R. A., & Schultz, J. C. (2012). Novel application of 2-[18F]fluoro-2-deoxy-d-glucose to study plant defenses. Nuclear Medicine and Biology, 39, 1152–1160. DOI: 10.1016/j.nucmedbio.2012.06.005.

    Article  CAS  Google Scholar 

  • Fiorani, F., Rascher, U., Jahnke, S., & Schurr, U. (2012). Imaging plants dynamics in heterogenic environments. Current Opinion in Biotechnology, 23, 227–235. DOI: 10.1016/j.copbio.2011.12.010.

    Article  CAS  Google Scholar 

  • Fujimaki, S., Suzui, N., Ishioka, N. S., Kawachi, N., Ito, S., Chino, M., & Nakamura, S. (2010). Tracing cadmium from culture to spikelet: Noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiology, 152, 1796–1806. DOI: 10.1104/pp.109.151035.

    Article  CAS  Google Scholar 

  • Garbout, A., Munkholm, L. J., Hansen, S. B., Petersen, B. M., Munk, O. L., & Pajor, R. (2012). The use of PET/CT scanning technique for 3D visualization and quantification of realtime soil/plant interactions. Plant and Soil, 352, 113–127. DOI: 10.1007/s11104-011-0983-8.

    Article  CAS  Google Scholar 

  • Guldanová, J., Horník, M., Marešová, J., Pipšíka, M., Augustín, J., & Lesný, J. (2012). Uptake of zinc organic complexes by roots of vascular plants. In R. K. Behl, L. Bona, J. Pauk, W. Merbach, & A. Veha (Eds.), Crop science and technology for food security, bioenergy and sustainability (Chapter 37, pp. 301–308). Jodhpur, India: Agrobios (International).

    Google Scholar 

  • Hattori, E., Uchida, H., Harada, N., Ohta, M., Tsukada, H., Hara, Y., & Suzuki, T. (2008). Incorporation and translocation of 2-deoxy-2-[18F]fluoro-d-glucose in Sorghum bicolor (L.) Moench monitored using a planar positron imaging system. Planta, 227, 1181–1186. DOI: 10.1007/s00425-008-0701-9.

    Article  CAS  Google Scholar 

  • Hoagland, D. R. (1920). Optimum nutrient solutions for plants. Science, 52, 562–564. DOI: 10.1126/science.52.1354.562.

    Article  CAS  Google Scholar 

  • Horník, M., Pipšíka, M., Vrtoch, Ľ., Augustín, J., & Lesný, J. (2005). Bioaccumulation of 137Cs and 60Co by Helianthus annuus. Nukleonika, 50, S49–S52.

    Google Scholar 

  • Horník, M., Pipíška, M., Sekáčová, J., & Augustín, J. (2007). Determination of long distance transport of Cs+, Co2+ and Zn2+ ions in vascular plants by autoradiography and gammaspectrometry. Nova Biotechnologica, VII-1, 33–40.

    Google Scholar 

  • Ishii, S., Suzui, N., Ito, S., Ishioka, N. S., Kawachi, N., Ohtake, N., Ohyama, T., & Fujimaki, S. (2009). Real-time imaging of nitrogen fixation in an intact soybean plant with nodules using 13N-labeled nitrogen gas. Soil Science and Plant Nutrition, 55, 660–666. DOI: 10.1111/j.1747-0765.2009.00403.x.

    Article  CAS  Google Scholar 

  • Jahnke, S., Menzel, M. I., van Dusschoten, D., Roeb, G. W., Bühler, J., Minwuyelet, S., Blümler, P., Temperton, V. M., Hombach, T., Streun, M., Beer, S., Khodaverdi, M., Ziemons, K., Coenen, H. H., & Schurr, U. (2009). Combined MRI-PET dissects dynamic changes in plant structures and functions. The Plant Journal, 59, 634–644. DOI: 10.1111/j.1365-313x.2009.03888.x.

    Article  CAS  Google Scholar 

  • Kawachi, N., Suzui, N., Ishii, S., Ito, S., Ishioka, N. S., Yamazaki, H., Hatano-Iwasaki, A., Ogawa, K., & Fujimaki, S. (2011). Real-time whole-plant imaging of 11C translocation using positron-emitting tracer imaging system. Nuclear Instruments and Methods in Physics Research A, 648, S317–S320. DOI: 10.1016/j.nima.2010.10.152.

    Article  CAS  Google Scholar 

  • Kiser, M. R., Reid, C. D., Crowell, A. S., Phillips, R. P., & Howell, C. R. (2008). Exploring the transport of plant metabolites using positron emitting radiotracers. HFSP Journal, 2, 189–204. DOI: 10.2976/1.2921207.

    Article  CAS  Google Scholar 

  • Kiyomiya, S., Nakanishi, H., Uchida, H., Nishiyama, S., Tsukada, H., Ishioka, N. S., Watanabe, S., Osa, A., Mizuniwa, C., Ito, T., Matsuhashi, S., Hashimoto, S., Sekine, T., Tsuji, A., & Mori, S. (2001a). Light activates H2 15O flow in rice: Detailed monitoring using a positron-emitting tracer imaging system (PETIS). Physiologia Plantarum, 113, 359–367. DOI: 10.1034/j.1399-3054.2001.1130309.x.

    Article  CAS  Google Scholar 

  • Kiyomiya, S., Nakanishi, H., Uchida, H., Tsuji, A., Nishiyama, S., Futatsubashi, M., Tsukada, H., Ishioka, N. S., Watanabe, S., Ito, T., Mizuniwa, C., Osa, A., Matsuhashi, S., Hashimoto, S., Sekine, T., & Mori, S. (2001b). Real time visualization of 13N-translocation in rice under different environmental conditions using positron emitting tracer imaging system. Physiology, 125, 1743–1753. DOI: 10.1104/pp.125.4.1743.

    CAS  Google Scholar 

  • Kume, T., Matsuhashi, S., Shimazu, M., Ito, H., Fujimura, T., Adachi, K., Uchida, H., Shigeta, N., Matsuoka, H., Osa, A., & Sekine, T. (1997). Uptake and transport of positron-emitting tracer (18F) in plants. Applied Radiation and Isotopes, 48, 1035–1043. DOI: 10.1016/s0969-8043(97)00117-6.

    Article  CAS  Google Scholar 

  • Marešová, J., Remenárová, L., Horník, M., Pipíška, M., Augustín, J., & Lesný, J. (2012). Foliar uptake of zinc by vascular plants: radiometric study. Journal of Radioanalytical and Nuclear Chemistry, 292, 1329–1337. DOI: 10.1007/s10967-012-1642-0.

    Article  Google Scholar 

  • McKay, R. M. L., Palmer, G. R., Ma, X. P., Layzell, D. B., & McKee, B. T. A. (1988). The use of positron emission tomography for studies of long-distance transport in plants: uptake and transport of 18F. Plant, Cell & Environment, 11, 851–861. DOI: 10.1111/j.1365-3040.1988.tb01911.x.

    Article  CAS  Google Scholar 

  • Nakanishi, H., Bughio, N., Matsuhashi, S., Ishioka, N. S., Uchida, H., Tsuji, A., Osa, A., Sekine, T., Kume, T., & Mori, S. (1999). Visualizing real time [11C]methionine translocation in Fe-sufficient and Fe-defficient barley using a positron emitting tracer imaging system (PETIS). Journal of Experimental Botany, 50, 637–643. DOI: 10.1093/jxb/50.334.637.

    Article  CAS  Google Scholar 

  • Nakanishi, T. M., Okuni, Y., Furukawa, J., Tanoi, K., Yokota, H., Ikeue, N., Matsubayashi, M., Uchida, H., & Tsiji, A. (2003). Water movement in a plant sample by neutron beam analysis as well as positron emission tracer imaging system. Journal of Radioanalytical and Nuclear Chemistry, 255, 149–153. DOI: 10.1023/a:1022252419649.

    Article  CAS  Google Scholar 

  • Sugita, R., Kobayashi, N. I., Hirose, A., Ohmae, Y., Tanoi, K., & Nakanishi, T. M. (2013). Nondestructive real-time radioisotope imaging system for visualizing 14C-labeled chemicals supplied as CO2 in plants using Arabidopsis thaliana. Journal of Radioanalytical and Nuclear Chemistry, 298, 1411–1416. DOI: 10.1007/s10967-013-2462-6.

    Article  CAS  Google Scholar 

  • Tanoi, K., Hojo, J., Nishioka, M., Nakanishi, T. M., & Suzuki, K. (2005). New technique to trace [15O]water uptake in a living plant with an imaging plate and a BGO detector system. Journal of Radioanalytical and Nuclear Chemistry, 263, 547–552. DOI: 10.1007/s10967-005-0090-5.

    Article  CAS  Google Scholar 

  • Thorpe, M. R., Ferrieri, A. P., Herth, M. M., & Ferrieri R. A. (2007). 11C-imaging: methyl jasmonate moves in both phloem and xylem, promotes transport of jasmonate, and of photoassimilate even after proton transport is decoupled. Planta, 226, 541–551. DOI: 10.1007/s00425-007-0503-5.

    Article  CAS  Google Scholar 

  • Tsukamoto, T., Uchida, H., Nakanishi, H., Nishiyama, S., Tsukada, H., Matsuhashi, S., Nishizawa, N. K., & Mori, S. (2004). H2 15O translocation in rice was enhanced by 10 μm 5-aminolevulinic acid as monitored by positron emitting tracer imaging system (PETIS). Soil Science and Plant Nutrition, 50, 1085–1088. DOI: 10.1080/00380768.2004.10408578.

    Article  CAS  Google Scholar 

  • Tsukamoto, T., Nakanishi, H., Uchida, H., Watanabe, S., Matsuhashi, S., Mori, S., & Nishizawa, N. K. (2009). 52Fe translocation in barley as monitored by a positron-emitting tracer imaging system (PETIS): Evidence for the direct translocation of Fe from roots to young leaves via phloem. Plant and Cell Physiology, 50, 48–57. DOI: 10.1093/pcp/pcn192.

    Article  CAS  Google Scholar 

  • Van Bel, A. J. E., & Hess, P. H. (2008). Hexoses as phloem transport sugars: the end of a dogma? Journal of Experimental Botany, 59, 261–272. DOI: 10.1093/jxb/erm294.

    Article  Google Scholar 

  • Watanabe, S., Iida, Y., Suzui, N., Katabuchi, T., Ishii, S., Kawachi, N., Hanaoka, H., Watanabe, S., Matsuhashi, S., Endo, K., & Ishioka, N. S. (2009). Production of nocarrier-added 64Cu and applications to molecular imaging by PET and PETIS as a biomedical tracer. Journal of Radioanalytical and Nuclear Chemistry, 280, 199–205. DOI: 10.1007/s10967-008-7443-9.

    Article  CAS  Google Scholar 

  • Weisenberger, A. G., Kross, B., Lee, S. J., McKisson, J., McKisson, J. E., Xi, W., Zorn, C., Howell, C. R., Crowell, A. S., Reid, C. D., & Smith, M. (2013). Nuclear physics detector technology applied to plant biology research. Nuclear Instruments and Methods in Physics Research A, 718, 157–159. DOI: 10.1016/j.nima.2012.08.097.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraj Lesný.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Partelová, D., Uhrovčík, J., Lesný, J. et al. Application of positron emission tomography and 2-[18F]fluoro-2-deoxy-d-glucose for visualization and quantification of solute transport in plant tissues. Chem. Pap. 68, 1463–1473 (2014). https://doi.org/10.2478/s11696-014-0609-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0609-8

Keywords

Navigation