Skip to main content
Log in

Cobalt ion-doped polyaniline, poly(N-methylaniline), and poly(N-ethylaniline): electrosynthesis and characterisation using electrochemical methods in acidic solutions

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Cobalt ion (Co2+)-doped polyaniline (PANI-Co), poly(N-methylaniline) (PNMA-Co), and poly(N-ethylaniline) (PNEA-Co) films were synthesised electrochemically on a pencil graphite electrode (PGE) and their electrochemical properties were investigated for supercapacitor applications. The polymer film-coated electrodes (PGE/PANI-Co, PGE/PNMA-Co, and PGE/PNEA-Co) thus obtained were characterised by scanning electron microscopy (SEM) and different electrochemical methods. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were employed in 0.1 M H2SO4 solution to calculate the specific capacitance (C S) values of the electrodes. The maximum C S of 192.94 F g−1, 139.83 F g−1, and 47.12 F g−1 were achieved for PGE/PANI-Co, PGE/PNMA-Co, and PGE/PNEA-Co at 1 mV s−1, respectively. On the other hand, the charge/discharge stability of the electrodes was analysed using the repeating chronopotentiometry (RCP) method. The RCP measurements indicate that the electrodes could be used as an electrode active material for low voltage supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelaziz, M. (2011). Cerium (III) doping effects on optical and thermal properties of PVA films. Physica B, 406, 1300–1307. DOI: 10.1016/j.physb.2011.01.021.

    Article  CAS  Google Scholar 

  • Arslan, A., & Hur, E. (2014). Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes. Chemical Papers, 68, 504–515. DOI: 10.2478/s11696-013-0475-9.

    Article  CAS  Google Scholar 

  • Cebeci, F. Ç., Geyik, H., Sezer, E., & Sarac, A. S. (2007). Synthesis, electrochemical characterization and impedance studies on novel thiophene-nonylbithiazole-thiophene comonomer. Journal of Electroanalytical Chemistry, 610, 113–121. DOI: 10.1016/j.jelechem.2007.07.012.

    Article  CAS  Google Scholar 

  • Chen, P. C., Shen, G., Shi, Y., Chen, H., & Zhou, C. (2010). Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano, 4, 4403–4411. DOI: 10.1021/nn100856y.

    Article  CAS  Google Scholar 

  • Davoglio, R. A., Biaggio, S. R., Bocchi, N., & Rocha-Filho, R. C. (2013). Flexible and high surface area composites of carbon fiber, polypyrrole, and poly(DMcT) for supercapacitor electrodes. Electrochimica Acta, 93, 93–100. DOI: 10.1016/j.electacta.2013.01.062.

    Article  CAS  Google Scholar 

  • Deshpande, P. P., Murali, M., Deshpande, P. P., Galphade, S., & More, A. (2013). Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors. Chemical Papers, 67, 1066–1071. DOI: 10.2478/s11696-013-0317-9.

    Article  CAS  Google Scholar 

  • Dilgin, Y., Kızılkaya, B., Ertek, B., Eren, N., & Dilgin, D. G. (2012). Amperometric determination of sulfide based on its electrocatalytic oxidation at a pencil graphite electrode modified with quercetin. Talanta, 89, 490–495. DOI: 10.1016/j.talanta.2011.12.074.

    Article  CAS  Google Scholar 

  • Dubal, D. P., Kim, W. B., & Lokhande, C. D. (2012). Galvanostatically deposited Fe: MnO2 electrodes for supercapacitor application. Journal of Physics and Chemistry of Solids, 73, 18–24. DOI: 10.1016/j.jpcs.2011.09.005.

    Article  CAS  Google Scholar 

  • Dubal, D. P., & Lokhande, C. D. (2013). Significant improvement in the electrochemical performances of nano-nest like amorphous MnO2 electrodes due to Fe doping. Ceramics International, 39, 415–423. DOI: 10.1016/j.ceramint.2012.06.042.

    Article  CAS  Google Scholar 

  • Dubal, D. P., Patil, S. V., Gund, G. S., & Lokhande, C. D. (2013). Polyaniline-polypyrrole nanograined composite via electrostatic adsorption for high performance electrochemical supercapacitors. Journal of Alloys and Compounds, 552, 240–247. DOI: 10.1016/j.jallcom.2012.10.031.

    Article  CAS  Google Scholar 

  • Duran, B., Bereket, G., Turhan, M. C., & Virtanen, S. (2011). Poly(N-methyl aniline) thin films on copper: Synthesis, characterization and corrosion protection. Thin Solid Films, 519, 5868–5874. DOI: 10.1016/j.tsf.2011.02.084.

    Article  CAS  Google Scholar 

  • Fu, C., Zhou, H., Liu, R., Huang, Z., Chen, J., & Kuang, Y. (2012). Supercapacitor based on electropolymerized polythiophene and multi-walled carbon nanotubes composites. Materials Chemistry and Physics, 132, 596–600. DOI: 10.1016/j.matchemphys.2011.11.074.

    Article  CAS  Google Scholar 

  • Genies, E. M., & Tsintavis, C. (1985). Redox mechanism and electrochemical-behaviour of polyaniline deposits. Journal of Electroanalytical Chemistry, 195, 109–128. DOI: 10.1016/0022-0728(85)80009-7.

    Article  CAS  Google Scholar 

  • Genies, E. M., Syed, A. A., & Tsintavis, C. (1985). Electrochemical study of polyaniline in aqueous and organic medium. Redox and kinetic properties. Molecular Crystals and Liquid Crystals, 121, 181–186. DOI: 10.1080/00268948508074858.

    Article  CAS  Google Scholar 

  • Ghani, S. A., & Young, H. C. (2010). Conductive polymer based on polyaniline-eggshell powder (PANI-ESP) composites. Journal of Physical Science, 21, 81–97.

    CAS  Google Scholar 

  • Gujar, T. P., Kim, W. Y., Puspitasari, I., Jung, K. D., & Joo, O. S. (2007). Electrochemically deposited nanograin ruthenium oxide as a pseudocapacitive electrode. International Journal of Electrochemical Science, 2, 666–673.

    CAS  Google Scholar 

  • Gund, G. S., Dubal, D. P., Patil, B. H., Shinde, S. S., & Lokhande, C. D. (2013). Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. Electrochimica Acta, 92, 205–215. DOI: 10.1016/j.electacta.2012.12.120.

    Article  CAS  Google Scholar 

  • Gupta, V., & Miura, N. (2005). Electrochemically deposited polyaniline nanowire’s network. A high-performance electrode material for redox supercapacitor. Electrochemical and Solid-State Letters, 8, A630–A632. DOI: 10.1149/1.2087207.

    Article  CAS  Google Scholar 

  • Gupta, V., & Miura, M. (2006). Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochimica Acta, 52, 1721–1726. DOI: 10.1016/j.electacta.2006.01.074.

    Article  CAS  Google Scholar 

  • Gurav, K. V., Patil, U. M., Shin, S. W., Agawane, G. L., Suryawanshi, M. P., Pawar, S. M., Patil, P. S., Lokhande, C. D., & Kim, J. H. (2013). Room temperature chemical synthesis of Cu(OH)2 thin films for supercapacitor application. Journal of Alloys and Compounds, 573, 27–31. DOI: 10.1016/j.jallcom.2013.03.193.

    Article  CAS  Google Scholar 

  • Heeger, A. J. (2002). Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synthetic Metals, 125, 23–42. DOI: 10.1016/s0379-6779(01)00509-4.

    Article  CAS  Google Scholar 

  • Heli, H., Yadegari, H., & Jabbari, A. (2012). Graphene nanosheets-poly(o-aminophenol) nanocomposite for supercapacitor applications. Materials Chemistry and Physics, 134, 21–25. DOI: 10.1016/j.matchemphys.2012.02.065.

    Article  CAS  Google Scholar 

  • Hu, C. C., & Chu, C. H. (2000). Electrochemical and textural characterization of iridium-doped polyaniline films for electrochemical capacitors. Materials Chemistry and Physics, 65, 329–338. DOI: 10.1016/s0254-0584(00)00254-6.

    Article  CAS  Google Scholar 

  • Hu, Y., Zhu, H., Wang, J., & Chen, Z. (2011). Synthesis of layered birnessite-type manganese oxide thin films on plastic substrates by chemical bath deposition for flexible transparent supercapacitors. Journal of Alloys and Compdounds, 509, 10234–10240. DOI: 10.1016/j.jallcom.2011.08.080.

    Article  CAS  Google Scholar 

  • Izumi, C. M. S., Constantino, V. R. L., Ferreira, A. M. C., & Temperini, M. L. A. (2006). Spectroscopic characterization of polyaniline doped with transition metal salts. Synthetic Metals, 156, 654–663. DOI: 10.1016/j.synthmet.2005.12.023.

    Article  CAS  Google Scholar 

  • Jagadale, A. D., Kumbhar, V. S., Dhawale, D. S., & Lokhande, C. D. (2013). Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes. Electrochimica Acta, 98, 32–38. DOI: 10.1016/j.electacta.2013.02.094.

    Article  CAS  Google Scholar 

  • Jin, M., Han, G., Chang, Y., Zhao, H., & Zhang, H. (2011). Flexible electrodes based on polypyrrole/manganese dioxide/polypropylene fibrous membrane composite for supercapacitor. Electrochimica Acta, 56, 9838–9845. DOI: 10.1016/j.electacta.2011.08.079.

    Article  CAS  Google Scholar 

  • Justin, P., & Rao, G. R. (2010). CoS spheres for high-rate electrochemical capacitive energy storage application. International Journal of Hydrogen Energy, 35, 9709–9715. DOI: 10.1016/j.ijhydene.2010.06.036.

    Article  CAS  Google Scholar 

  • Kang, E. T., Neoh, K. G., & Tan, K. L. (1997). Photoelectron spectroscopy of conductive polymers. In H. S. Nalwa (Ed.), Handbook of organic conductive molecules and polymers (Vol. 3, Chapter 3, pp. 121–182). Chichester, UK: Wiley.

    Google Scholar 

  • Li, Y., Zheng, J. L., Feng, J., & Jing, X. L. (2013) Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration. Chemical Papers, 67, 876–890. DOI: 10.2478/s11696-013-0347-3.

    Article  CAS  Google Scholar 

  • MacDiarmid, A. G., Mammone, R. J., Kaner, R. B., Porter, S. J., Pethig, R., Heeger, A. J., & Rosseinsky, D. R. (1985). The concept of doping of conducting polymers: The role of reduction potentials [and discussion]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 314, 3–15. DOI: 10.1098/rsta.1985.0004.

    Article  Google Scholar 

  • MacDiarmid, A. G. (2001). ”Synthetic metals”: A novel role for organic polymers (Nobel lecture). Angewandte Chemie International Edition, 40, 2581–2590. DOI: 10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2.

    Article  CAS  Google Scholar 

  • Mandić, Z., Kraljić Roković, M., & Pokupčić, T. (2009). Polyaniline as cathodic material for electrochemical energy sources: The role of morphology. Electrochimica Acta, 54, 2941–2950. DOI: 10.1016/j.electacta.2008.11.002.

    Article  Google Scholar 

  • Martinez, S., Valek, L., Petrović, Ž., Metikoš-Huković, M., & Piljac, J. (2005). Catechin antioxidant action at various pH studied by cyclic voltammetry and PM3 semi-empirical calculations. Journal of Electroanalytical Chemistry, 584, 92–99. DOI: 10.1016/j.jelechem.2005.07.015.

    Article  CAS  Google Scholar 

  • Mastragostino, M., Arbizzani, C., & Soavi, F. (2001). Polymerbased supercapacitors. Journal of Power Sources, 97–98, 812–815. DOI: 10.1016/s0378-7753(01)00613-9.

    Article  Google Scholar 

  • Mohamed, R. I., & Gadou, A. M. (2000). AC-conductivity and dielectric properties of γ-irradiated PVA films doped with Mn2+ ions. Egyptian Journal of Solids, 23, 277–286.

    Google Scholar 

  • Patil, U. M., Salunkhe, R. R., Gurav, K. V., & Lokhande, C. D. (2008). Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Applied Surface Science, 255, 2603–2607. DOI: 10.1016/j.apsusc.2008.07.192.

    Article  CAS  Google Scholar 

  • Patil, U. M., Kulkarni, S. B., Jamadade, V. S., & Lokhande, C. D. (2011). Chemically synthesized hydrous RuO2 thin films for supercapacitor application. Journal of Alloys and Compounds, 509, 1677–1682. DOI: 10.1016/j.jallcom.2010.09.133.

    Article  CAS  Google Scholar 

  • Pournaghi-Azar, M. H., & Habibi, B. (2007). Electropolymerization of aniline in acid media on the bare and chemically pre-treated aluminum electrodes: A comparative characterization of the polyaniline deposited electrodes. Electrochimica Acta, 52, 4222–4230. DOI: 10.1016/j.electacta.2006.11.050.

    Article  CAS  Google Scholar 

  • Ruffien-Ciszak, A., Gros, P., Comtat, M., Schmitt, A. M., Questel, E., Casas, C., & Redoules, D. (2006). Exploration of the global antioxidant capacity of the stratum corneum by cyclic voltammetry. Journal of Pharmaceutical and Biomedical Analysis, 40, 162–167. DOI: 10.1016/j.jpba.2005.05.035.

    Article  CAS  Google Scholar 

  • Shadi, L., Gheybi, H., Entezami, A. A., & Safa, K. D. (2012). Synthesis and characterization of N- and O-alkylated poly[aniline-co-N-(2-hydroxyethyl) aniline]. Journal of Applied Polymer Science, 124, 2118–2126. DOI: 10.1002/app.35218.

    Article  CAS  Google Scholar 

  • Sharma, R. K., & Zhai, L. (2009). Multiwall carbon nanotube supported poly(3,4-ethylenedioxythiophene)/manganese oxide nano-composite electrode for super-capacitors. Electrochimica Acta, 54, 7148–7155. DOI: 10.1016/j.electacta.2009.07.048.

    Article  CAS  Google Scholar 

  • Wang, Q., Li, J. L., Gao, F., Li, W. S., Wu, K. Z., & Wang, X. D. (2008). Activated carbon coated with polyaniline as an electrode material in supercapacitors. New Carbon Materials, 23, 275–280. DOI: 10.1016/s1872-5805(08)60030-x.

    Article  Google Scholar 

  • Wang, Q., Yan, J., Wang, Y., Ning, G., Fan, Z., Wei, T., Cheng, J., Zhang, M., & Jing, X. (2013). Template synthesis of hollow carbon spheres anchored on carbon nanotubes for high rate performance supercapacitors. Carbon, 52, 209–218. DOI: 10.1016/j.carbon.2012.09.022.

    Article  CAS  Google Scholar 

  • Wu, C., Wang, X., Ju, B., Zhang, X., Jiang, L., & Wu, H. (2012). Supercapacitive behaviors of activated mesocarbon microbeads coated with polyaniline. International Journal of Hydrogen Energy, 37, 14365–14372. DOI: 10.1016/j.ijhydene.2012.07.087.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evrim Hur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hur, E., Arslan, A. Cobalt ion-doped polyaniline, poly(N-methylaniline), and poly(N-ethylaniline): electrosynthesis and characterisation using electrochemical methods in acidic solutions. Chem. Pap. 68, 1573–1583 (2014). https://doi.org/10.2478/s11696-014-0605-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0605-z

Keywords

Navigation