Skip to main content
Log in

Dye decolorisation by laccase immobilised in lens-shaped poly(vinyl alcohol) hydrogel capsules

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this study, laccase (from Trametes versicolor, 8.3 U mg −1enz ) was used for the decolorisation of Saturn Blue L4G (10 mg L−1). The efficiency of the decolorisation (ratio between the amount of decolorised dye and initial amount of dye) by a free enzyme was 48 % and the decolorisation rate was determined at 2.11 × 10−3 mgdye mg −1enz min−1. After immobilisation in lens-shaped poly(vinyl alcohol) hydrogel capsules LentiKats® Biocatalyst (LB) (concentration of immobilised enzyme: 4 mg per g of particles; volume-loading rate of LB: 10 g per 100 mL of medium), the enzyme retained 16.1 % of its original activity (1.34 U mg −1enz ). Immobilised laccase was used for the dye decolorisation in 130 repeated batch tests with 71 % efficiency (LB activity: 7 × 10−3 mgdye min−1 g −1LB ). In continuous mode (after 716.5 h), the efficiency of the dye decolorisation was 48 % (LB activity: 3.3 × 10−4 mgdye min/−1 g −1LB ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaya-Delgado, L., Hidalgo-Lara, M. E., & Montes-Horcasitas, M. C. (2006). Hydrolysis of sucrose by invertase immobilized on nylon-6 microbeads. Food Chemistry, 99, 299–304. DOI: 10.1016/j.foodchem.2005.07.048.

    Article  CAS  Google Scholar 

  • Arica, M. Y., & Hasirci, V. (1993). Immobilization of glucose oxidase: A comparison of entrapment and covalent bonding. Journal of Chemical Technology and Biotechnology, 58, 287–292. DOI: 10.1002/jctb.280580313.

    Article  CAS  Google Scholar 

  • Arica, M. Y., Alaeddinoğlu, N. G., & Hasirci, V. (1998). Immobilization of glucoamylase onto activated pHEMA/EGDMA microspheres: properties and application to a packed-bed reactor. Enzyme and Microbial Technology, 22, 152–157. DOI: 10.1016/s0141-0229(97)00139-7.

    Article  CAS  Google Scholar 

  • Bautista, L. F., Morales, G., & Sanz, R. (2010). Immobilization strategies for laccase from Trametes versicolor on mesostructured silica materials and the application to the degradation of naphthalene. Bioresource Technology, 101, 8541–8548. DOI: 10.1016/j.biortech.2010.06.042.

    Article  Google Scholar 

  • Bayramoğlu, G., & Arica, M. Y. (2009). Immobilization of laccase onto poly(glycidylmethacrylate) brush grafted poly(hydroxyethylmethacrylate) films: Enzymatic oxidation of phenolic compounds. Material Science and Engineering C, 29, 1990–1997. DOI: 10.1016/j.msec.2009.03.011.

    Article  Google Scholar 

  • Bayramoğlu, G., Yilmaz, M., & Arica, M. Y. (2010). Reversible immobilization of laccase to poly(4-vinylpyridine) grafted and Cu(II) chelated magnetic beads: Biodegradation of reactive dyes. Bioresource Technology, 101, 6615–6621. DOI: 10.1016/j.biortech.2010.03.088.

    Article  Google Scholar 

  • Boušková, A., Mrákota, J., Stloukal, R., Trögl, J., Pilařová, V., Křiklavová, L., & Lederer, T. (2011). Three examples of nitrogen removal from industrial wastewater using Lentikats Biotechnology. Desalination, 280, 191–196. DOI: 10.1016/j.desal.2011.07.001.

    Article  Google Scholar 

  • Cabana, H., Ahamed, A., & Leduc, R. (2011). Conjugation of laccase from the white rot fungus Trametes versicolor to chitosan and its utilization for the elimination of triclosan. Bioresource Technology, 102, 1656–1662. DOI: 10.1016/j.biortech.2010.09.080.

    Article  CAS  Google Scholar 

  • Cárdenas-Fernández, M., Neto, W., López, C., álvaro, G., Tufvesson, P., & Woodley, J. M. (2012). Immobilization of Escherichia coli containing ω-transaminase activity in LentiKats®. Biotechnology Progress, 28, 693–698. DOI: 10.1002/btpr.1538.

    Article  Google Scholar 

  • Crestini, C., Perazzini, R., & Saladino, R. (2010). Oxidative functionalisation of lignin by layer-by-layer immobilised laccases and laccase microcapsules. Applied Catalysis A: General, 372, 115–123. DOI: 10.1016/j.apcata.2009.10.012.

    Article  CAS  Google Scholar 

  • Czichocki, G., Dautzenberg, H., Capan, E., & Vorlop, K. D. (2001). New and effective entrapment of polyelectrolyteenzyme-complexes in LentiKats. Biotechnology Letters, 23, 1303–1307. DOI: 10.1023/a:1010569322537.

    Article  CAS  Google Scholar 

  • Ding, W. A., & Vorlop, K. D. (1995). DE Patent No. 4327923 A1. Munich, Germany: The German Patent and Trade Mark Office.

  • Fernández-Fernández, M., Sanromán, M. Á., & Moldes, D. (2013). Recent developments and applications of immobilized laccase. Biotechnology Advances, 31, 1808–1825. DOI: 10.1016/j.biotechadv.2012.02.013.

    Article  Google Scholar 

  • Georgieva, S., Godjevargova, T., Mita, D. G., Diano, N., Menale, C., Nicolucci, C., Carratelli, C. R., Mita, L., & Golovinsky, E. (2010). Non-isothermal bioremediation of waters polluted by phenol and some of its derivatives by laccase covalently immobilized on polypropylene membranes. Journal of Molecular Catalysis B: Enzymatic, 66, 210–218. DOI: 10.1016/j.molcatb.2010.05.011.

    Article  CAS  Google Scholar 

  • Grosová, Z., Rosenberg, M., Gdovin, M., Sláviková, L., & Rebroš, M. (2009). Production of D-galactose using β-galactosidase and Saccharomyces cerevisiae entrapped in poly(vinylalcohol) hydrogel. Food Chemistry, 116, 96–100. DOI: 10.1016/j.foodchem.2009.02.011.

    Article  Google Scholar 

  • Hu, X., Zhao, X., & Hwang, H. (2007). Comparative study of immobilized Trametes versicolor laccase on nanoparticles and kaolinite. Chemosphere, 66, 1618–1626. DOI: 10.1016/j.chemosphere.2006.08.004.

    Article  CAS  Google Scholar 

  • Kunamneni, A., Ballesteros, A., Plou, F. J., & Alcalde, M. (2007). Fungal laccase — a versatile enzyme for biotechnological applications. In A. Méndez-Vilas (Ed.), Communicating current research and educational topics and trends in applied microbiology (Microbiology series, Vol. 1, pp. 233–245). Badajoz, Spain: Formatex.

    Google Scholar 

  • Kunamneni, A., Ghazi, I., Camarero, A., Ballesteros, A., Plou, F. J., & Alcalde, M. (2008). Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers. Process Biochemistry, 43, 169–178. DOI: 10.1016/j.procbio.2007.11.009.

    Article  CAS  Google Scholar 

  • Makas, Y. G., Kalkan, N. A., Aksoy, S., Altinok, H., & Hasirci, N. (2010). Immobilization of laccase in κ-carrageenan based semi-interpenetrating polymer networks. Journal of Biotechnology, 148, 216–220. DOI: 10.1016/j.jbiotec.2010.05.011.

    Article  CAS  Google Scholar 

  • Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40, 1451–1463. DOI: 10.1016/j.enzmictec.2007.01.018.

    Article  CAS  Google Scholar 

  • Minussi, R. C., Pastore, G. M., & Durán, N. (2002). Potential applications of laccase in the food industry. Trends in Food Science & Technology, 13, 205–216. DOI: 10.1016/s0924-2244(02)00155-3.

    Article  CAS  Google Scholar 

  • Mohidem, N. A., & Mat, H. (2009). The catalytic activity of laccase immobilized in sol-gel silica. Journal of Applied Sciences, 9, 3141–3145. DOI: 10.3923/jas.2009.3141.3145.

    Article  CAS  Google Scholar 

  • Montereali, M. R., Della Seta, L., Vastarella, W., & Pilloton, R. (2010). A disposable laccase-tyrosinase based biosensor for amperometric detection of phenolic compounds in must and wine. Journal of Molecular Catalysis B: Enzymatic, 64, 189–194. DOI: 10.1016/j.molcatb.2009.07.014.

    Article  CAS  Google Scholar 

  • Plagemann, R., Jonas, L., & Kragl, U. (2011). Ceramic honeycomb as support for covalent immobilization of laccase from Trametes versicolor and transformation of nuclear fast red. Applied Microbiology and Biotechnology, 90, 313–320. DOI: 10.1007/s00253-010-3038-9.

    Article  CAS  Google Scholar 

  • Qiu, H., Xu, C., Huang, X., Ding, Y., Qu, Y., & Gao, P. (2009). Immobilization of laccase on nanoporous gold: Comparative studies on the immobilization strategies and the particle size effects. The Journal of Physical Chemistry C, 113, 2521–2525. DOI: 10.1021/jp8090304.

    Article  CAS  Google Scholar 

  • Rebroš, M., Rosenberg, M., Mlichová, Z., Krištofíková, Ľ., & Paluch, M. (2006). A simple entrapment of glucoamylase into LentiKats® as an efficient catalyst for maltodextrin hydrolysis. Enzyme and Microbial Technology, 39, 800–804. DOI: 10.1016/j.enzmictec.2006.01.001.

    Article  Google Scholar 

  • Rebroš, M., Rosenberg, M., Mlichová, Z., & Krištofíková, Ľ. (2007). Hydrolysis of sucrose by invertase entrapped in polyvinyl alcohol hydrogel capsules. Food Chemistry, 102, 784–787. DOI: 10.1016/j.foodchem.2006.06.020.

    Article  Google Scholar 

  • Rebroš, M., Pilniková, A., Šimčíková, D., Weignerová, L., Stloukal, R., Křen, V., & Rosenberg, M. (2013). Recombinant α-L-rhamnosidase of Aspergillus terreus immobilization in polyvinylalcohol hydrogel and its application in rutin derhamnosylation. Biocatalysis and Biotransformation, 31, 329–334. DOI: 10.3109/10242422.2013.858711.

    Article  Google Scholar 

  • Rekuć, A., Jastrzembska, B., Liesiene, J., & Bryjak, J. (2009). Comparative studies on immobilized laccase behaviour in packed-bed and batch reactors. Journal of Molecular Catalysis B: Enzymatic, 57, 216–223. DOI: 10.1016/j.molcatb.2008.09.007.

    Article  Google Scholar 

  • Riu, J., Schönsee, I., & Barceló, D. (1998). Determination of sulfonated azo dyes in groundwater and industrial effluents by automated solid-phase extraction followed by capillary electrophoresis/mass spectrometry. Journal of Mass Spectrometry, 33, 653–663. DOI: 10.1002/(SICI)1096-9888(199807)33:7〈653::AID-JMS666〉3.0.CO;2-K.

    Article  CAS  Google Scholar 

  • Riva, S. (2006). Laccases: blue enzymes for green chemistry. Trends in Biotechnology, 24, 219–226. DOI: 10.1016/j.tibtech.2006.03.006.

    Article  CAS  Google Scholar 

  • Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, á., Torres, R., & Fernández-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42, 6290–6307. DOI: 10.1039/c2cs35231a.

    Article  CAS  Google Scholar 

  • Rodríguez Couto, S., & Toca Herrera, J. L. (2006). Industrial and biotechnological applications of laccases: A review. Biotechnology Advances, 24, 500–513. DOI: 10.1016/j.biotechadv.2006.04.003.

    Article  Google Scholar 

  • Rubenwolf, S., Strohmeier, O., Kloke, A., Kerzenmacher, S., Zengerle, R., & von Stetten, F. (2010). Carbon electrodes for direct electron transfer type laccase cathodes investigated by current density-cathode potential behavior. Biosensors and Bioelectronics, 26, 841–845. DOI: 10.1016/j.bios.2010.05.008.

    Article  CAS  Google Scholar 

  • Silva, R. N., Asquieri, E. R., & Fernandes, K. F. (2005). Immobilization of Aspergillus niger glucoamylase onto a polyaniline polymer. Process Biochemistry, 40, 1155–1159. DOI: 10.1016/j.procbio.2004.04.006.

    Article  CAS  Google Scholar 

  • Spahn, C., & Minteer, S. D. (2008). Enzyme immobilization in biotechnology. Recent Patents on Engineering, 2, 195–200. DOI: 10.2174/187221208786306333.

    Article  CAS  Google Scholar 

  • Tan, Y., Deng, W., Ge, B., Xie, Q., Huang, J., & Yao, S. (2009). Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposite film. Biosensors and Bioelectronics, 24, 2225–2231. DOI: 10.1016/j.bios.2008.11.026.

    Article  CAS  Google Scholar 

  • Trögl, J., Boušková, A., Mrákota, J., Pilařová, V., Krudencová, J., Měchurová, J., Kříženecká, S., & Stloukal, R. (2011). Removal of nitrates from simulated ion-exchange brines with Paracoccus denitrificans encapsulated in Lentikats biocatalyst. Desalination, 275, 82–86. DOI: 10.1016/j.desal.2011.02.033.

    Article  Google Scholar 

  • Tümtürk, H., Arslan, F., Disli, A., & Tufan, Y. (2000). Immobilization of invertase attached to a granular dimmer acid-co-alkyl polyamine. Food Chemistry, 69, 5–9. DOI: 10.1016/s0308-8146(99)00208-3.

    Article  Google Scholar 

  • Uhlich, T., Ulbricht, M., & Tomaschewski, G. (1996). Immobilization of enzymes in photochemically cross-linked polyvinyl alcohol. Enzyme and Microbial Technology, 19, 124–131. DOI: 10.1016/0141-0229(95)00190-5.

    Article  CAS  Google Scholar 

  • Xu, X., Lu, P., Zhou, Y., Zhao, Z., & Guo, M. (2009). Laccase immobilized on methylene blue modified mesoporous silica MCM-41/PVA. Materials Science and Engineering C, 29, 2160–2164. DOI: 10.1016/j.msec.2009.04.019.

    Article  CAS  Google Scholar 

  • Yamak, O., Kalkan, N. A., Aksoy, S., Altinok, H., & Hasirci, N. (2009). Semi-interpenetrating polymer networks (semi-IPNs) for entrapment of laccase and their use in Acid Orange 52 decolorization. Process Biochemistry, 44, 440–445. DOI: 10.1016/j.procbio.2008.12.008.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Rochefort, D. (2010). Comparison of emulsion and vibration nozzle method for microencapsulation of laccase and glucose oxidase by interfacial reticulation of poly(ethyleneimine). Journal of Microencapsulation, 27, 703–713. DOI: 10.3109/02652048.2010.509518.

    Article  CAS  Google Scholar 

  • Zollinger, H. (2003). Color chemistry: Synthesis, properties, and applications of organic dyes and pigments (3rd ed., pp. 249). Zürich, Switzerland/Weinheim, Germany: VHCA, Verlag Helvetica Chimica Acta/Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Stloukal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stloukal, R., Watzková, J. & Gregušová, B. Dye decolorisation by laccase immobilised in lens-shaped poly(vinyl alcohol) hydrogel capsules. Chem. Pap. 68, 1514–1520 (2014). https://doi.org/10.2478/s11696-014-0601-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0601-3

Keywords

Navigation