Skip to main content
Log in

Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Nanoparticles as a progressively developing branch offer a tool for studying the interaction of carbon quantum dots (CQDs) with DNA. In this study, fluorescent CQDs were synthesized using citric acid covered with polyethylene glycol (PEG) as the source of carbon precursors. Furthermore, interactions between CQDs and DNA (double-stranded DNA and single-stranded DNA) were investigated by spectral methods, gel electrophoresis, and electrochemical analysis. Primarily, the fluorescent behavior of CQDs in the presence of DNA was monitored and major differences in the interaction of CQDs with tested single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) were observed at different amounts of CQDs (µg mL−1: 25, 50, 100, 250, 500). It was found that the interaction of ssDNA with CQDs had no significant influence on the CQDs fluorescence intensity measured at the excitation wavelengths of 280 nm, 350 nm, and 400 nm. However, in the presence of dsDNA, the fluorescence intensity of CQDs was significantly increased. Our results provide basic understanding of the interaction between CQDs and DNA. Such fabricated CQDs-DNA might be of great benefit for the emerging nanomaterials based biosensing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, W. J., Zheng, H.Z., Long, Y.J., Mao, X. J., Gao, M., & Zhang, L. (2011) A carbon dots-based fluorescence turn-on method for DNA determination. Analytical Sciences, 27, 243–246. DOI: 10.2116/analsci.27.243.

    Article  CAS  Google Scholar 

  • Bartošík, M., & Paleček, E. (2011) Square wave stripping voltammetry of unlabeled single- and double-stranded DNAs. Electroanalysis, 23, 1311–1319. DOI: 10.1002/elan.201100079.

    Article  Google Scholar 

  • Bourlinos, A. B., Stassinopoulos, A., Anglos, D., Zboril, R., Karakassides, M., & Giannelis, E. P. (2008) Surface functionalized carbogenic quantum dots. Small, 4, 455–458. DOI: 10.1002/smll.200700578.

    Article  CAS  Google Scholar 

  • Cao, L., Wang, X., Meziani, M. J., Lu, F., Wang, H., Luo, P. G., Lin, Y., Harruff, B. A., Veca, L. M., Murray, D., Xie, S. Y., & Sun, Y. P. (2007) Carbon dots for multiphoton bioimaging. Journal of the American Chemical Society, 129, 11318–11319. DOI: 10.1021/ja073527l.

    Article  CAS  Google Scholar 

  • Ding, C., Zhu, A., & Tian, Y. (2014) Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Accounts of Chemical Research, 47, 20–30. DOI: 10.1021/ar400023s.

    Article  CAS  Google Scholar 

  • Dong, Y., Zhou, N., Lin, X., Lin, J., Chi, Y., & Chen, G. (2010) Extraction of electrochemiluminescent oxidized cCarbon quantum dots from activated carbon. Chemistry of Materials, 22, 5895–5899. DOI: 10.1021/cm1018844.

    Article  CAS  Google Scholar 

  • Dong, Y., Wang, R., Li, H., Shao, J., Chi, Y., Lin, X., & Chen, G. (2012a) Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon, 50, 2810–2815. DOI: 10.1016/j.carbon.2012.02.046.

    Article  CAS  Google Scholar 

  • Dong, Y., Wang, R., Li, G., Chen, C., Chi, Y., & Chen, G. (2012b) Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Analytical Chemistry, 84, 6220–6224. DOI: 10.1021/ac3012126.

    Article  CAS  Google Scholar 

  • Dong, Y., Chen, C., Lin, J., Zhou, N., Chi, Y., & Chen, G. (2013) Electrochemiluminescence emission from carbon quantum dot-sulfite coreactant system. Carbon, 56, 12–17. DOI: 10.1016/j.carbon.2012.12.086.

    Article  CAS  Google Scholar 

  • Fu, A., Gu, W., Larabell, C., & Alivisatos, A. P. (2005) Semi-conductor nanocrystals for biological imaging. Current Opinion in Neurobiology, 15, 568–575. DOI: 10.1016/j.conb.2005.08.004.

    Article  CAS  Google Scholar 

  • Grimes, A. F., Call, S. E., Vicente, D. A., English, D. S., & Harbron, E. J. (2006) Toward efficient photomodulation of conjugated polymer emission: Optimizing differential energy transfer in azobenzene-substituted PPV derivatives. The Journal of Physical Chemistry B, 110, 19183–19190. DOI: 10.1021/jp0613236.

    Article  CAS  Google Scholar 

  • He, S., Huang, B. H., Tan, J., Luo, Q. Y., Lin, Y., Li, J., Hu, Y., Zhang, L., Yan, S., Zhang, Q., Pang, D. W., & Li, L. (2011) One-to-one quantum dot-labeled single long DNA probes. Biomaterials, 32, 5471–5477. DOI: 10.1016/j.biomaterials.2011.04.013.

    Article  CAS  Google Scholar 

  • Huska, D., Fabrik, I., Baloun, J., Adam, V., Masarik, M., Hubalek, J., Vasku, A., Trnkova, L., Horna, A., Zeman, L., & Kizek, R. (2009) Study of interactions between metallothionein and cisplatin by using differential pulse voltammetry Brdicka’s reaction and quartz crystal microbalance. Sensors, 9, 1355–1369. DOI: 10.3390/s90301355.

    Article  CAS  Google Scholar 

  • Jia, X., Li, J., & Wang, E. (2012) One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale, 4, 5572–5575. DOI: 10.1039/c2nr31319g.

    Article  CAS  Google Scholar 

  • Kim, J., Park, J., Kim, H., Singha, K., & Kim, W. J. (2013) Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA. Biomaterials, 34, 7168–7180. DOI: 10.1016/j.biomaterials.2013.05.072.

    Article  CAS  Google Scholar 

  • Krejcova, L., Hynek, D., Kopel, P., Rodrigo, M. A. M., Tmejova, K., Trnkova, L., Adam, V., Hubalek, J., & Kizek, R. (2013) Quantum dots for electrochemical labelling of neuramidinase genes of H5N1, H1N1 and H3N2 influenza. International Journal of Electrochemical Science, 8, 4457–4471.

    CAS  Google Scholar 

  • Kwon, W., Do, S., Won, D. C., & Rhee, S. W. (2013) Carbon quantum dot-based field-effect transistors and their ligand length-dependent carrier mobility. ACS Applied Materials & Interfaces, 5, 822–827. DOI: 10.1021/am3023898.

    Article  CAS  Google Scholar 

  • Li, H., Ming, H., Liu, Y., Yu, H., He, X., Huang, H., Pan, K., Kang, Z., & Lee, S. T. (2011a) Fluorescent carbon nanoparticles: electrochemical synthesis and their pH sensitive photoluminescence properties. New Journal of Chemistry, 35, 2666–2670. DOI: 10.1039/c1nj20575g.

    Article  CAS  Google Scholar 

  • Li, H., He, X., Liu, Y., Huang, H., Lian, S., Lee, S. T., & Kang, Z. (2011b) One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon, 49, 605–609. DOI: 10.1016/j.carbon.2010.10.004.

    Article  CAS  Google Scholar 

  • Li, Y., Zhang, B. P., Zhao, J. X., Ge, Z. H., Zhao, X. K., & Zou, L. (2013a) ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties. Applied Surface Science, 279, 367–373. DOI: 10.1016/j.apsusc.2013.04.114.

    Article  CAS  Google Scholar 

  • Li, K., Zhang, W., & Chen, Y. (2013b) Quantum dot binding to DNA: Single-molecule imaging with atomic force microscopy. Biotechnology Journal, 8, 110–116. DOI: 10.1002/biot.201200155.

    Article  CAS  Google Scholar 

  • Liang, Q., Ma, W., Shi, Y., Li, Z., & Yang, X. (2013) Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon, 60, 421–428. DOI: 10.1016/j.carbon.2013.04.055.

    Article  CAS  Google Scholar 

  • Linehan, K., & Doyle, H. (2014) Efficient one-pot synthesis of highly monodisperse carbon quantum dots. RSC Advances, 4, 18–21. DOI: 10.1039/c3ra45083j.

    Article  CAS  Google Scholar 

  • Liu, Y., Liu, C. Y., & Zhang, Z. Y. (2011) Synthesis and surface photochemistry of graphitized carbon quantum dots. Journal of Colloid and Interface Science, 356, 416–421. DOI: 10.1016/j.jcis.2011.01.065.

    Article  CAS  Google Scholar 

  • Liu, S., Tian, J., Wang, L., Luo, Y., & Sun, X. (2012) A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose. RSC Advances, 2, 411–413. DOI: 10.1039/c1ra00709b.

    Article  CAS  Google Scholar 

  • Long, Y. M., Zhou, C. H., Zhang, Z. L., Tian, Z. Q., Bao, L., Lin, Y., & Pang, D. W. (2012) Shifting and non-shifting fluorescence emitted by carbon nanodots. Journal of Materials Chemistry, 22, 5917–5920. DOI: 10.1039/c2jm30639e.

    Article  CAS  Google Scholar 

  • Ming, H., Ma, Z., Liu, Y., Pan, K., Yu, H., Wang, F., & Kang, Z. (2012) Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Transactions, 41, 9526–9531. DOI: 10.1039/c2dt30985h.

    Article  CAS  Google Scholar 

  • Paleček, E. (1960) Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature, 188, 656–657. DOI: 10.1038/188656a0.

    Article  Google Scholar 

  • Palecek, E. (1961) Oscillographic polarography of deoxyribonucleic acid degradation products. Biochimica et Biophysica Acta, 51, 1–8. DOI: 10.1016/0006-3002(61)91010-1.

    Article  CAS  Google Scholar 

  • Paleček, E., & Fojta, M. (2001) Detecting DNA hybridization and damage. Analytical Chemistry, 73, 74A–83A. DOI: 10.1021/ac0123936.

    Google Scholar 

  • Paleček, E. (2002) Past, present and future of nucleic acids electrochemistry. Talanta, 56, 809–819. DOI: 10.1016/s0039-9140(01)00649-x.

    Article  Google Scholar 

  • Pandey, A.P., Karande, K. P., More, M. P., Gattani, S.G., & Deshmukh, P. K. (2014) Graphene based nanomaterials: Diagnostic applications. Journal of Biomedical Nanotechnology, 10, 179–204. DOI: 10.1166/jbn.2014.1773.

    Article  Google Scholar 

  • Pohanka, M. (2014) Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chemical Papers, in press. DOI: 10.2478/s11696-014-0542-x.

  • Ryvolova, M., Chomoucka, J., Drbohlavova, J., Kopel, P., Babula, P., Hynek, D., Adam, V., Eckschlager, T., Hubalek, J., Stiborova, M., Kaiser, J., & Kizek, R. (2012) Modern micro and nanoparticle-based imaging techniques. Sensors, 12, 14792–14820. DOI: 10.3390/s121114792.

    Article  Google Scholar 

  • Sahu, S., Behera, B., Maiti, T. K., & Mohapatra, S. (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chemical Communications, 48, 8835–8837. DOI: 10.1039/c2cc33796g.

    Article  CAS  Google Scholar 

  • Song, Y., Feng, D., Shi, W., Li, X., & Ma, H. (2013) Parallel comparative studies on the toxic effects of unmodified CdTe quantum dots, gold nanoparticles, and carbon nanodots on live cells well as green gram sprouts. Talanta, 116, 237–244. DOI: 10.1016/j.talanta.2013.05.022.

    Article  CAS  Google Scholar 

  • Su, Y., Xie, Y., Hou, X., & Lv, Y. (2014) Recent advances in analytical applications of nanomaterials in liquid-phase chemiluminescence. Applied Spectroscopy Reviews, 49, 201–232. DOI: 10.1080/05704928.2013.819514.

    Article  CAS  Google Scholar 

  • Vaishnavi, E., & Renganathan, R. (2014) “Turn-on-off-on” fluorescence switching of quantum dots-cationic porphyrin nanohybrid: a sensor for DNA. Analyst, 139, 225–234. DOI: 10.1039/c3an01871g.

    Article  CAS  Google Scholar 

  • Wang, F., Pang, S., Wang, L., Li, Q., Kreiter, M., & Liu, C. Y. (2010a) One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chemistry of Materials, 22, 4528–4530. DOI: 10.1021/cm101350u.

    Article  CAS  Google Scholar 

  • Wang, C., Gao, X., & Su, X. (2010b) Study the damage of DNA molecules induced by three kinds of aqueous nanoparticles. Talanta, 80, 1228–1233. DOI: 10.1016/j.talanta.2009.09.014.

    Article  CAS  Google Scholar 

  • Wang, J., Shan, Y., Zhao, W. W., Xu, J. J., & Chen, H. Y. (2011) Gold nanoparticle enhanced electrochemiluminescence of CdS thin films for ultrasensitive thrombin detection. Analytical Chemistry, 83, 4004–4011. DOI: 10.1021/ac200616g.

    Article  CAS  Google Scholar 

  • Yang, T., Lu, M., Mao, X., Liu, W., Wan, L., Miao, S., & Xu, J. (2013) Synthesis of CdS quantum dots (QDs) via a hot-bubbling route and co-sensitized solar cells assembly. Chemical Engineering Journal, 225, 776–783. DOI: 10.1016/j.cej.2013.04.028.

    Article  CAS  Google Scholar 

  • Zhang, X., Ming, H., Liu, R., Han, X., Kang, Z., Liu, Y., & Zhang, Y. (2013) Highly sensitive humidity sensing properties of carbon quantum dots films. Materials Research Bulletin, 48, 790–794. DOI: 10.1016/j.materresbull.2012.11.056.

    Article  CAS  Google Scholar 

  • Zhao, D., Li, J., Yang, T., & He, Z. (2014) “Turn off-on” fluorescent sensor for platinum drugs-DNA interactions based on quantum dots. Biosensors and Bioelectronics, 52, 29–35. DOI: 10.1016/j.bios.2013.08.031.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojtech Adam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milosavljevic, V., Nguyen, H.V., Michalek, P. et al. Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization. Chem. Pap. 69, 192–201 (2015). https://doi.org/10.2478/s11696-014-0590-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0590-2

Keywords

Navigation