Skip to main content
Log in

Magnetic mixed matrix membranes in air separation

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Ethylcellulose (EC) or linear polyimide (LPI) and magnetic neodymium powder particles MQP-14-12 were used for the preparation of inorganic-organic hybrid membranes. For all the membranes, N2, O2 and air permeability were examined. Mass transport coefficients were determined using the Time Lag System based on dynamic experiments in a constant pressure system. The results showed that the membrane permeation properties were improved by the addition of magnetic neodymium particles to the polymer matrix. The magnetic ethylcellulose and polyimide membranes exhibited higher gas permeability and diffusivity, while their permeability selectivity and solubility were either unchanged or slightly increased. Polyimide mixed matrix membranes were characterised by a higher thermal and mechanical stability, larger filler loading, better magnetic properties and reasonable selectivity in the air separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baker, R. W. (2004). Chapter 1: Overview of membrane science and technology. In Membrane technology and applications (2nd ed., pp. 1–14). Chichester, UK: Wiley. DOI: 10.1002/0470020393.ch1.

    Chapter  Google Scholar 

  • Balkus, K. J., Cattanach, K., Musselsman, I. H., & Ferraris, J. P. (2002). Selective matrimid membranes containing mesoporous molecular sieves. MRS Proceedings, 752, 91–96. DOI: 10.1557/proc-752-aa4.3.

    Article  Google Scholar 

  • Dudek, G., Turczyn, R., Strzelewicz, A., Rybak, A., Krasowska, M., & Grzywna, Z. J. (2012). Preparation and characterization of iron oxides-polymer composite membranes. Separation Science and Technology, 47, 1390–1394. DOI: 10.1080/01496395.2012.672519.

    Article  CAS  Google Scholar 

  • Friess, K., Sysel, P., Minko, E., Hauf, M., Vopička, O., Hynek, V., Pilnáček, K., & Šípek, M. (2010). Comparison of transport properties of hyperbranched and linear polyimides. Desalination and Water Treatment, 14, 165–169. DOI: 10.5004/dwt.2010.1022.

    Article  CAS  Google Scholar 

  • Goh, P. S., Ismail, A. F., Sanip, S. M., Ng, B. C., & Aziz, M. (2011). Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Separation and Purification Technology, 81, 243–264. DOI: 10.1016/j.seppur.2011.07.042.

    Article  CAS  Google Scholar 

  • Grzywna, Z. J., & Frisch, H. L. (1984). An application of WKB approximation to transient diffusion in inhomogeneous membranes. Part 3: Permeation. Polish Journal of Chemistry, 58, 227–244.

    CAS  Google Scholar 

  • Grzywna, Z. J., Borys, P., Rybak, A., Pawełek, K., & Strzelewicz, A. (2010). On the air enrichment by magnetic membranes. In Proceedings of the XXV International Symposium on Physicochemical Methods of Separations Ars Separatoria, July 4–7, 2010 (pp. 15–21). Toruń, Poland: Nicolaus Copernicus University in Toruń.

    Google Scholar 

  • Hradil, J., Sysel, P., BroŽová, L., Kovářová, J., & Kotek, J. (2007). Heterogeneous membranes based on a composite of a hypercrosslinked microparticle adsorbent and polyimide binder. Reactive and Functional Polymers, 67, 432–441. DOI: 10.1016/j.reactfunctpolym.2007.02.004.

    Article  CAS  Google Scholar 

  • Huang, M. R, Li, X. G., & Lin, G. (1995). Air separation properties and stabilities of blend membranes of liquid crystals with ethyl cellulose. Separation Science and Technology, 30, 449–460. DOI: 10.1080/01496399508013882.

    Article  CAS  Google Scholar 

  • Khulbe, K. C., Matsuura, T., & Noh, S. H. (1998). Effect of thickness of the PPO membranes on the surface morphology. Journal of Membrane Science, 145, 243–251. DOI: 10.1016/s0376-7388(98)00083-0.

    Article  CAS  Google Scholar 

  • Krasowska, M., Rybak, A., Dudek, G., Strzelewicz, A., Pawełek, K., & Grzywna, Z. J. (2012). Structure morphology problems in the air separation by polymer membranes with magnetic particles. Journal of Membrane Science, 415–416, 864–870. DOI: 10.1016/j.memsci.2012.06.005.

    Article  Google Scholar 

  • Kruczek, B., & Matsuura, T. (1998). Development and characterization of homogeneous membranes de from high molecular weight sulfonated polyphenylene oxide. Journal of Membrane Science, 146, 263–275. DOI: 10.1016/s0376-7388(98)00120-3.

    Article  CAS  Google Scholar 

  • Kruczek, B., & Matsuura, T. (2000). Effect of metal substitution of high molecular weight sulfonated polyphenylene oxide membranes on their gas separation performance. Journal of Membrane Science, 167, 203–216. DOI: 10.1016/s0376-7388(99)00292-6.

    Article  CAS  Google Scholar 

  • Lee, H. J., Kim, D. P., Suda, H., & Haraya, K. (2006). Gas permeation properties for the post-oxidized polyphenylene oxide (PPO) derived carbon membranes: Effect of the oxidation temperature. Journal of Membrane Science, 282, 82–88. DOI: 10.1016/j.memsci.2006.05.006.

    Article  CAS  Google Scholar 

  • Li, X. G., & Huang, M. R (1996). Water-casting ultrathin-film composite membranes for air separation. Separation Science and Technology, 31, 579–603. DOI: 10.1080/01496399608000706.

    Article  CAS  Google Scholar 

  • Li, N. N., Fane, A. G., Winston Ho, W. S., & Matsuura, T. (2008). Advanced membrane technology and applications. Hoboken, NJ, USA: Wiley. DOI: 10.1002/9780470276280.

    Book  Google Scholar 

  • Mazid, M. A., & Matsuura, T. (1993). Membrane gas separation: A critical overview. Separation Science and Technology, 28, 2287–2296. DOI: 10.1080/01496399308019739.

    Article  Google Scholar 

  • Michalov, J. (1989). Permeability of porous membrane. Chemical Papers, 43, 121–130.

    CAS  Google Scholar 

  • Minko, E., Sysel, P., Hauf, M., Brus, J., & Kobera, L. (2010). Synthesis and properties of hyperbranched polyimides combined with silica. Macromolecular Symposia, 295, 88–93. DOI: 10.1002/masy.200900159.

    Article  CAS  Google Scholar 

  • Moore, T. T., & Koros, W. J. (2005). Non-ideal effects in organic-inorganic materials for gas separation membranes. Journal of Molecular Structure, 739, 87–98. DOI: 10.1016/j.molstruc.2004.05.043.

    Article  CAS  Google Scholar 

  • Mulder, M. (1996). Basic principles of membrane technology. Dordrecht, The Netherlands: Kluwer Academic Publisher.

    Book  Google Scholar 

  • Noble, R. D., & Stern, S. A. (1995). Membrane separations technology: Principles and applications. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Perez, E. V., Balkus, K. J., Ferraris, J. P., & Musselman, I. H. (2009). Mixed-matrix membranes containing MOF-5 for gas separations. Journal of Membrane Science, 328, 165–173. DOI: 10.1016/j.memsci.2008.12.006.

    Article  CAS  Google Scholar 

  • Polotskaya, G. A., Penkova, A. V., Toikka, A. M., Pientka, Z., Brozova, L., & Bleha, M. (2007). Transport of small molecules through polyphenylene oxide membranes modified by fullerene. Separation Science and Technology, 42, 333–347. DOI: 10.1080/01496390600997963.

    Article  CAS  Google Scholar 

  • Rybak, A., Grzywna, Z. J., & Kaszuwara, W. (2009a). On the air enrichment by polymer magnetic membranes. Journal of Membrane Science, 336, 79–85. DOI: 10.1016/j.memsci.2009.03.027.

    Article  CAS  Google Scholar 

  • Rybak, A., Krasowska, M., Strzelewicz, A., & Grzywna, Z. J. (2009b). “Smoluchowski type” equations for modelling of air separation by membranes with various structure. Acta Physica Polonica B, 40, 1447–1454.

    CAS  Google Scholar 

  • Rybak, A., Strzelewicz, A., Krasowska, M., Dudek, G., & Grzywna, Z. J. (2012). Influence of various parameters on the air separation process by magnetic membranes. Separation Science and Technology, 47, 1395–1404. DOI: 10.1080/01496395.2012.672509.

    Article  CAS  Google Scholar 

  • Sapurina, I., & Stejskal, J. (2009). Ternary composites of multiwall carbon nanotubes, polyaniline and noble-metal nanoparticles for potential applications in electrocatalysis. Chemical Papers, 63, 579–585. DOI: 10.2478/s11696-009-0061-3.

    Article  CAS  Google Scholar 

  • Shao, L., Samseth, J., & Hägg, M. B. (2009). Crosslinking and stabilization of nanoparticles filled PMP nanocomposite membranes for gas separations. Journal of Membrane Science, 326, 285–292. DOI: 10.1016/j.memsci.2008.09.053.

    Article  CAS  Google Scholar 

  • Sieffert, D., & Staudt, C. (2011). Preparation of hybrid materials containing copolyimides covalently linked with carbon nanotubes. Separation and Purification Technology, 77, 99–103. DOI: 10.1016/j.seppur.2010.11.026.

    Article  CAS  Google Scholar 

  • Singh, H., & Hatton, T. A. (2007). Orientational dependence of apparent magnetic susceptibilities of superparamagnetic nanoparticles in planar structured arrays: Effect on magnetic moments of nanoparticle-coated core-shell magnetic beads. Journal of Magnetism and Magnetic Materials, 315, 53–64. DOI: 10.1016/j.jmmm.2007.02.198.

    Article  CAS  Google Scholar 

  • Strathmann, H., Giorno, L., & Drioli, E. (2006). An introduction to membrane science and technology. Rende, Italy: Consiglio Nazionale delle Ricerche.

    Google Scholar 

  • Strzelewicz, A., & Grzywna, Z. J. (2007). Studies on the air membrane separation in the presence of a magnetic field. Journal of Membrane Science, 294, 60–67. DOI: 10.1016/j.memsci.2007.02.008.

    Article  CAS  Google Scholar 

  • Sysel, P., Minko, E., & Čechová, R. (2009). Preparation and characterization of hyperbranched polyimides based on 4,4′,4″-triaminotriphenyl-methane. E-Polymers, 9, 976–985. DOI: 10.1515/epoly.2009.9.1.976.

    Google Scholar 

  • Sysel, P., Minko, E., Hauf, M., Friess, K., Hynek, V., Vopička, O., Pilnáček, K., & Šípek, M. (2011). Mixed matrix membranes based on hyperbranched polyimide and mesoporous silica for gas separation. Desalination and Water Treatment, 34, 211–215. DOI: 10.5004/dwt.2011.2859.

    Article  CAS  Google Scholar 

  • Tagirov, M. S., Aminova, R. M., Frossati, G., Efimov, V. N., Mamin, G. V., Naletov, V. V., Tayurskii, D. A., & Yudin, A. N. (2003). On the magnetism of liquid nitrogen-liquid oxygen mixture. Physica B: Condensed Matter, 329–333, 433–434. DOI: 10.1016/s0921-4526(02)02330-x.

    Article  Google Scholar 

  • Tran, A., & Kruczek, B. (2007). Development and characterization of homopolymers and copolymers from the family of polyphenylene oxides. Journal of Applied Polymer Science, 106, 2140–2148. DOI: 10.1002/app.26055.

    Article  CAS  Google Scholar 

  • Tural, B., Özkan, N., & Volkan, M. (2009). Preparation and characterization of polymer coated superparamagnetic magnetite nanoparticle agglomerates. Journal of Physics and Chemistry of Solids, 70, 860–866. DOI: 10.1016/j.jpcs.2009.04.007.

    Article  CAS  Google Scholar 

  • Villaluenga, J. P. G., Seoane, B., Hradil, J., & Sysel, P., (2007). Gas permeation characteristics of heterogeneous ODPA-BIS P polyimide membranes at different temperatures. Journal of Membrane Science, 305, 160–168. DOI: 10.1016/j.memsci.2007.08.002.

    Article  CAS  Google Scholar 

  • Vu, D. Q., Koros, W. J., & Miller, S. J. (2003). Mixed matrix membranes using carbon molecular sieves. Journal of Membrane Science, 211, 311–334. DOI: 10.1016/s0376-7388(02)00429-5.

    Article  CAS  Google Scholar 

  • Wankat, P. C., & Kostroski, K. P. (2011). Hybrid membranecryogenic distillation air separation process for oxygen production. Separation Science and Technology, 46, 1539–1545. DOI: 10.1080/01496395.2011.577497.

    Article  CAS  Google Scholar 

  • Xu, C., Ohno, K., Ladmiral, V., & Composto, R. J. (2008). Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers. Polymer, 49, 3568–3577. DOI: 10.1016/j.polymer.2008.05.040.

    Article  CAS  Google Scholar 

  • Yampolskii, Y., Freeman, B., Grzywna, Z. J., Rybak, A., & Strzelewicz, A. (2010). Chapter 9. Air enrichment by polymeric magnetic membranes. In Y. Yampolskii & B. Freeman (Eds.), Membrane gas separation (pp. 159–182). Chichester, UK: Wiley. DOI: 10.1002/9780470665626.ch9.

    Chapter  Google Scholar 

  • Zanard, S., Alberti, A., Cruciani, G., Corma, A., Fornés, V., & Brunelli, M. (2004). Crystal structure determination of zeolite Nu-6(2) and its layered precursor Nu-6(1). Angewandte Chemie International Edition, 43, 4933–4937. DOI: 10.1002/anie.200460085.

    Article  Google Scholar 

  • Závišová, V., Koneracká, M., Štrbák, O., Tomašovičová, N., Kopčanský, P., Timko, M., & Vavra, I. (2007). Encapsulation of indomethacin in magnetic biodegradable polymer nanoparticles. Journal of Magnetism and Magnetic Materials, 311, 379–382. DOI: 10.1016/j.jmmm.2006.11.177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Rybak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybak, A., Dudek, G., Krasowska, M. et al. Magnetic mixed matrix membranes in air separation. Chem. Pap. 68, 1332–1340 (2014). https://doi.org/10.2478/s11696-014-0587-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0587-x

Keywords

Navigation