Skip to main content
Log in

Degradation of polylactide using basic ionic liquid imidazolium acetates

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Imidazolium acetate ionic liquids show high efficiency in the degradation of polylactides (PLA): degradation degree of PLA can reach almost 100 % in imidazolium acetate ionic liquids at 170°C and 1 h under atmospheric pressure, while the degradation degree of PLA remains close to 0 % using neutral 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4) and acidic ionic liquids at the same reaction conditions. With the increase of both the amount of acetate ionic liquid and the reaction temperature, the degradation degree of PLA increases. The structure of ionic liquids affects the degradation behavior of PLA: for cations, the proton from the C-2 position on the imidazolium ring is involved in the degradation of PLA; the degradation of PLA increases with the increase of the alkyl side-chain length of imidazolium cations; for anions, moderate basicity of the acetate ion contributes to the high activity of the imidazolium acetate ionic liquids in the degradation of PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • de Jong, S. J., Arias, E. R., Rijkers, D. T. S., van Nostrum, C. F., Kettenes-van den Bosch, J. J., & Hennink, W. E. (2001). New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus. Polymer, 42, 2795–2802. DOI: 10.1016/s0032-3861(00)00646-7.

    Article  Google Scholar 

  • He, X. L., Zhou, Q., Li, X. Y., Yang, P., van Kasteren, J. M. N., & Wang, Y. Z. (2012). Dechlorination of poly(vinyl chloride) by 1-butyl-3-methylimidazoliumhydroxide. Polymer Degradation and Stability, 97, 145–148. DOI: 10.1016/j.polymdegradstab.2011.11.005.

    Article  CAS  Google Scholar 

  • Höglund, A., Odelius, K., & Albertsson, A. C. (2013). Crucial differences in the hydrolytic degradation between industrial polylactide and laboratory-scale poly (L-lactide). ACS Applied Materials & Interfaces, 4, 2788–2793. DOI: 10.1021/am300438k.

    Article  Google Scholar 

  • Hollóczki, O., Gerhard, D., Massone, K., Szarvas, L., Németh, B., Veszprémi, T., & Nyulászi, L. (2010). Carbenes in ionic liquids. New Journal of Chemistry, 34, 3004–3009. DOI: 10.1039/c0nj00380h.

    Article  Google Scholar 

  • Huddleston, J. G., & Rogers, R. D. (1998). Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction. Chemical Communications, 1998, 1765–1766. DOI: 10.1039/a803999b.

    Article  Google Scholar 

  • Kamimura, A., & Yamamoto, S. (2007). An efficient method to depolymerize polyamide plastics: A new use of ionic liquids. Organic Letters, 9, 2533–2535. DOI: 10.1021/ol070886c.

    Article  CAS  Google Scholar 

  • Nampoothiri, K. M., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101, 8493–8501. DOI: 10.1016/j.biortech.2010.05.092.

    Article  Google Scholar 

  • Park, K. I., & Xanthos, M. (2009). A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polymer Degradation and Stability, 94, 834–844. DOI: 10.1016/j.polymdegradstab.2009.01.030.

    Article  CAS  Google Scholar 

  • Rodríguez, H., Gurau, G., Holbrey, J. D., & Rogers, R. D. (2011). Reaction of elemental chalcogens with imidazolium acetates to yield imidazole-2-chalcogenones: direct evidence for ionic liquids as proto-carbenes. Chemical Communications, 47, 3222–3224. DOI: 10.1039/c0cc05223j.

    Article  Google Scholar 

  • Rydz, J., Adamus, G., Wolna-Stypka, K., Marcinkowski, A., Misiurska-Marczak, M., & Kowalczuk, M. M. (2013). Degradation of polylactide in paraffin and selected protic media. Polymer Degradation and Stability, 98, 316–324. DOI: 10.1016/j.polymdegradstab.2012.09.010.

    Article  CAS  Google Scholar 

  • Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19, 634–643. DOI: 10.1016/j.tifs.2008.07.003.

    Article  CAS  Google Scholar 

  • Wang, H., Liu, Y. Q., Li, Z. X., Zhang, X. P., Zhang, S. J., & Zhang, Y. Q. (2009). Glycolysis of poly(ethylene terephthalate) catalyzed by ionic liquids. European Polymer Journal, 45, 1535–1544. DOI: 10.1016/j.eurpolymj.2009.01.025.

    Article  CAS  Google Scholar 

  • Xu, L., Crawford, K., & Gorman, C. B. (2011). Effects of temperature and pH on the degradation of poly(lactic acid) brushes. Macromolecules, 44, 4777–4782. DOI: 10.1021/ma2000948.

    Article  CAS  Google Scholar 

  • Zhao, T., Zhou, Q., He, X. L., Wei, S. D., Wang, L., van Kasteren, J. M. N., & Wang, Y. Z. (2010). A highly efficient approach for dehydrochlorinating polyvinyl chloride: catalysis by 1-butyl-3-methylimidazolium chloride. Green Chemistry, 12, 1062–1065. DOI: 10.1039/b927106f.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XY., Zhou, Q., Yang, KK. et al. Degradation of polylactide using basic ionic liquid imidazolium acetates. Chem. Pap. 68, 1375–1380 (2014). https://doi.org/10.2478/s11696-014-0560-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0560-8

Keywords

Navigation