Skip to main content
Log in

Interdisciplinary study on pottery experimentally impregnated with wine

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Experimentally developed ceramic pots, with two different sizes of grain, were half-filled with wine and subjected to thermal alteration at constant elevated temperature ((60 ± 2)°C) in darkness for 12 weeks. This work sought to characterise the samples thereby obtained from chemical and mineralogical perspectives using scanning electron microscopy and an energy-dispersive X-ray microanalysis system (SEM-EDX), Fourier transform infrared spectroscopy (FTIR) and capillary electrophoresis (CE) with UV detection as an alternative to chromatographic methods, due to its good resolution, automation, simplicity, high speed, low consumption of chemicals and short time required for sample preparation. The capillary electrophoresis method was used for the detection of five wine biomarkers: succinic acid, malic acid, tartaric acid, citric acid and lactic acid. In general, it was noted that the fine-grained ceramic assortment retained the organic material better than the coarser-grained ceramics. An interesting observation derived from this study was that not only could tartaric acid be considered as a biomarker for wine residues in archaeological pottery, but malic acid could also act similarly for white wine and lactic acid for red wine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barnard, H., Ambrose, S. H., Beehr, D. E., Forster, M. D., Lanehart, R. E., Malainey, M. E., Parr, R. E., Rider, M., Solazzo, C., & Yohe, R. M., II. (2007). Mixed results of seven methods for organic residue analysis applied to one vessel with the residue of a known foodstuff. Journal of Archaeological Science, 34, 28–37. DOI: 10.1016/j.jas.2006.03.010.

    Article  Google Scholar 

  • Barone, G., Mazzoleni, P., Spagnolo, G., & Aquilia, E. (2012). The transport amphorae of Gela: a multidisciplinary study on provenance and technological aspects. Journal of Archaeological Science, 39, 11–22. DOI: 10.1016/j.jas.2011.06.018.

    Article  Google Scholar 

  • Beck, C. W., Smart, C. J., & Ossenkop, D. J. (1989). Residues and linings in ancient Mediterranean transport amphoras. In R. O. Allen (Ed.), Archeological chemistry IV — Advances in chemistry (pp. 369–380). Washington, D.C., USA: American Chemical Society.

    Google Scholar 

  • Bevin, C. J., Dambergs, R. G., Fergusson, A. J., & Cozzolino, D. (2008). Varietal discrimination of Australian wines by means of mid-infrared spectroscopy and multivariate analysis. Analytica Chimica Acta, 621, 19–23. DOI: 10.1016/j.aca.2007.10.042.

    Article  CAS  Google Scholar 

  • Copley, M. S., Rose, P. J., Clapham, A., Edwards, D. N., Horton, M. C., & Evershed, R. P. (2001). Detection of palm fruit lipids in archaeological pottery from Qasr Ibrim, Egyptian Nubia. Proceedings of the Royal Society Series B, Biological Sciences, 268, 593–597.

    Article  CAS  Google Scholar 

  • Copley, M. S., Hansel, F. A., Sadr, K., & Evershed, R. P. (2004). Organic residue evidence for the processing of marine animal products in pottery vessels from the pre-colonial archaeological site of Kasteelberg D east, South Africa. South African Journal of Science, 100, 279–283.

    CAS  Google Scholar 

  • Copley, M. S., Bland, H. A., Rose, P., Horton, M., & Evershed, R. P. (2005a). Gas chromatographic, mass spectrometric and stable carbon isotopic investigations of organic residues of plant oils and animal fats employed as illuminants in archaeological lamps from Egypt. Analyst, 130, 860–871. DOI: 10.1039/b500403a.

    Article  CAS  Google Scholar 

  • Copley, M. S., Berstan, R., Mukherjee, A. J., Dudd, S. N., Straker, V., Payne, S., & Evershed, R. P. (2005b). Dairying in antiquity. III. Evidence from absorbed lipid residues dating to the British Neolithic. Journal of Archaeological Science, 32, 523–546. DOI: 10.1016/j.jas.2004.08.006.

    Article  Google Scholar 

  • Craig, O. E., Forster, M., Andersen, S. H., Koch, E., Crombé, P., Milner, N. J., Stern, B., Bailey, G. N., & Heron, C. P. (2007). Molecular and isotopic demonstration of the processing of aquatic products in northern European prehistoric pottery. Archaeometry, 49, 135–142. DOI: 10.1111/j.1475-4754.2007.00292.x.

    Article  CAS  Google Scholar 

  • Damjanović, L., Holclajtner-Antunović, I., Mioč, U. B., Bikić, V., Milovanović, D., & Radosavljević-Evans, I. (2011). Archaeometric study of medieval pottery excavated at Stari (Old) Ras, Serbia. Journal of Archaeological Science, 38, 818–828. DOI: 10.1016/j.jas.2010.11.004.

    Article  Google Scholar 

  • Evershed, R. P., Vaughan, S. J., Dudd, S. N., & Soles, J. S. (1997). Fuel for thought? Beeswax in lamps and conical cups from Late Minoan Crete. Antiquity, 71, 979–985.

    Google Scholar 

  • Evershed, R. P., Dudd, S. N., Anderson-Stojanovic, V. R., & Gebhard, E. R. (2003). New chemical evidence for the use of combed ware pottery vessels as beehives in ancient Greece. Journal of Archaeological Science, 31, 1–12. DOI: 10.1006/jasc.2001.0827.

    Article  Google Scholar 

  • Evershed, R. P. (2008a). Organic residue analysis in archaeology: The archaeological biomarker revolution. Archaeometry, 50, 895–924. DOI: 10.1111/j.1475-4754.2008.00446.x.

    Article  CAS  Google Scholar 

  • Evershed, R. P. (2008b). Experimental approaches to the interpretation of absorbed organic residues in archaeological ceramics. World Archaeology, 40, 26–47. DOI: 10.1080/00438240801889373.

    Article  Google Scholar 

  • Froh, J. (2004). Archaeological ceramics studied by scanning electron microscopy. Hyperfine Interactions, 154, 159–176.

    Article  CAS  Google Scholar 

  • Galli, V., & Barbas, C. (2004). Capillary electrophoresis for the analysis of short-chain organic acids in coffee. Journal of Chromatography A, 1032, 299–304. DOI: 10.1016/j.chroma.2003.09.028.

    Article  CAS  Google Scholar 

  • Guasch-Jané, M. R., Andrés-Lacueva, C., Jáuregui, O., & Lamuela-Raventós, R. M. (2006a). First evidence for white wine in ancient Egypt from Tutankhamun’s tomb. Journal of Archaeological Science, 33, 1075–1080. DOI: 10.1016/j.jas.2005.11.012.

    Article  Google Scholar 

  • Guasch-Jané, M. R., Andrés-Lacueva, C., Jáuregui, O., & Lamuela-Raventós, R. M. (2006b). The origin of the ancient Egyptian drink Shedeh revealed using LC/MS/MS. Journal of Archaeological Science, 33, 98–101. DOI: 10.1016/j.jas.2005.06.013.

    Article  Google Scholar 

  • Gunasekaran, S., Anbalagan, G., & Pandi, S. (2006). Raman and infrared spectra of carbonates of calcite structure. Journal of Raman Spectroscopy, 37, 892–899. DOI: 10.1002/jrs.1518.

    Article  CAS  Google Scholar 

  • Hansel, F. A., Copley, M. S., Madureira, L. A. S., & Evershed, R. P. (2004). Thermally produced ω-(o-alkylphenyl) alkanoic acids provide evidence for the processing of marine products in archaeological pottery vessels. Tetrahedron Letters, 45, 2999–3002. DOI: 10.1016/j.tetlet.2004.01.111.

    Article  CAS  Google Scholar 

  • Izzo, F. C., Zendri, E., Bernardi, A., Balliana, E., & Sgobbi, M. (2013). The study of pitch via gas chromatography-mass spectrometry and Fourier-transformed infrared spectroscopy: the case of the Roman amphoras from Monte Poro, Calabria (Italy). Journal of Archaeological Science, 40, 595–600. DOI: 10.1016/j.jas.2012.06.017.

    Article  CAS  Google Scholar 

  • Legnaioli, S., Anabitarte Garcia, F., Andreotti, A., Bramanti, E., Díaz Pace, D., Formola, S., Lorenzetti, G., Martini, M., Pardini, L., Ribechini, E., Sibili, E., Spiniello, R., & Palleschi, V. (2013). Multi-technique study of a ceramic archaeological artifact and its content. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 100, 144–148. DOI: 10.1016/j.saa.2012.04.009.

    Article  CAS  Google Scholar 

  • Mills, J., & White, R. (1989). The identity of the resins from the late Bronze Age shipwreck at Ulu Burun (Kaş). Archaeometry, 31, 37–44. DOI: 10.1111/j.1475-4754.1989.tb01054.x.

    Article  CAS  Google Scholar 

  • Mukherjee, A. J., Gibson, A. M., & Evershed, R. P. (2008). Trends in pig product processing at British Neolithic Grooved Ware sites traced through organic residues in potsherds. Journal of Archaeological Science, 35, 2059–2073. DOI: 10.1016/j.jas.2008.01.010.

    Article  Google Scholar 

  • Palanivel, R., & Rajesh Kumar, U. (2011). Thermal and spectroscopic analysis of ancient potteries. Romanian Journal of Physics, 56, 195–208.

    CAS  Google Scholar 

  • Pecci, A., Giorgi, G., Salvini, L., & Cau Ontiveros, M. Á. (2013). Identifying wine markers in ceramics and plasters using gas chromatography-mass spectrometry. Experimental, and archaeological materials. Journal of Archaeological Science, 40, 109–115. DOI: 10.1016/j.jas.2012.05.001.

    Article  CAS  Google Scholar 

  • Peres, R.G., Moraes, E. P., Micke, G. A., Tonin, F.G., Tavares, M. F. M., & Rodriguez-Amaya, D. B. (2009). Rapid method for the determination of organic acids in wine by capillary electrophoresis with indirect UV detection. Food Control, 20, 548–552. DOI: 10.1016/j.foodcont.2008.08.004.

    Article  CAS  Google Scholar 

  • Regert, M. (2011). Analytical strategies for discriminating archeological fatty substances from animal origin. Mass Spectrometry Reviews, 30, 177–220. DOI: 10.1002/mas.20271.

    Article  CAS  Google Scholar 

  • Roberts, S., Sofaer, J., & Kiss, V. (2008). Characterization and textural analysis of Middle Bronze Age Transdanubian inlaid wares of the Encrusted Pottery Culture, Hungary: a preliminary study. Journal of Archaeological Science, 35, 322–330. DOI: 10.1016/j.jas.2007.03.013.

    Article  Google Scholar 

  • Robinson, J. (2006). The Oxford companion to wine (3rd ed.). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Romanus, K., Baeten, J., Poblome, J., Accardo, S., Degryse, P., Jacobs, P., De Vos, D., & Waelkens, M. (2009). Wine and olive oil permeation in pitched and non-pitched ceramics: relation with results from archaeological amphorae from Sagalassos, Turkey. Journal of Archaeological Science, 36, 900–909. DOI: 10.1016/j.jas.2008.11.024.

    Article  Google Scholar 

  • Rovio, S., Sirén, K., & Sirén, H. (2011). Application of capillary electrophoresis to determine metal cations, anions, organic acids, and carbohydrates in some Pinot Noir red wines. Food Chemistry, 124, 1194–1200. DOI: 10.1016/j.foodchem.2010.07.044.

    Article  CAS  Google Scholar 

  • Santalad, A., Teerapornchaisit, P., Burakham, R., & Srijaranai, S. (2007). Capillary zone electrophoresis of organic acids in beverages. LWT — Food Science and Technology, 40, 1741–1746. DOI: 10.1016/j.lwt.2007.01.007.

    Article  CAS  Google Scholar 

  • Stern, B., Heron, C., Corr, L., Serpico, M., & Bourriau, J. (2003). Compositional variation in aged and heated Pistacia resin found in Late Bronze Age Canaanite amphorae and bowls from Amarna, Egypt. Archaeometry, 45, 457–469. DOI: 10.1111/1475-4754.00121.

    Article  CAS  Google Scholar 

  • Tite, M. S. (1992). The impact of electron microscopy on ceramic studies. Proceedings of the British Academy, 22, 111–131.

    Google Scholar 

  • Truica, G. I., Teodor, E. D., & Radu, G. L. (2013). Organic acids assessments in medicinal plants by capillary electrophoresis. Revue Roumaine de Chimie, 58. (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgiana Ileana Badea.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teodor, E.D., Badea, G.I., Alecu, A. et al. Interdisciplinary study on pottery experimentally impregnated with wine. Chem. Pap. 68, 1022–1029 (2014). https://doi.org/10.2478/s11696-014-0559-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0559-1

Keywords

Navigation