Skip to main content
Log in

Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In the commercialisation of photocatalytic air purifiers, the performance as well as the cost of the catalytic material plays an important role. Where most comparative studies only regard the photocatalytic activity as a decisive parameter, in this study both activity and cost are taken into account. Using a cost-effectiveness analysis, six different commercially available TiO2-based catalysts are evaluated in terms of their activities in photocatalytic degradation of acetaldehyde as a model reaction for indoor air purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batterman, S., Godwin, C., & Jia, C. R. (2005). Long duration tests of room air filters in cigarette smokers’ homes. Environmental Science & Technology, 39, 7260–7268. DOI: 10.1021/es048951q.

    Article  CAS  Google Scholar 

  • Bekö, G., Clausen, G., & Weschler, C. J. (2008). Sensory pollution from bag filters, carbon filters and combinations. Indoor Air, 18, 27–36. DOI: 10.1111/j.1600-0668.2007.00501.x.

    Article  Google Scholar 

  • Bennett, A. (2009). Strategies and technologies: Controlling indoor air quality. Filtration & Separation, 46, 14–17. DOI: 10.1016/s0015-1882(09)70155-7.

    Article  CAS  Google Scholar 

  • Bianchi, C. L., Gatto, S., Pirola, C., Naldoni, A., Di Michele, A., Cerrato, G., Crocellà, V., & Capucci, V. (2014). Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized TiO2. Applied Catalysis B: Environmental, 146, 123–130. DOI: 10.1016/j.apcatb.2013.02.047.

    Article  Google Scholar 

  • Birnie, M., Riffat, S., & Gillott, M. (2006). Photocatalytic reactors: design for effective air purification. International Journal of Low-Carbon Technologies, 1, 47–58. DOI: 10.1093/ijlct/1.1.47.

    Article  Google Scholar 

  • Black, W. C. (1990). The CE plane: A graphic representation of cost-effectiveness. Medical Decision Making, 10, 212–214. DOI: 10.1177/0272989x9001000308.

    Article  CAS  Google Scholar 

  • Boardman, A. E., Greenberg, D. H., Vining, A. R., & Weimer, D. L. (2006). Cost-benefit analysis: concepts and practice (3rd ed.). New Jersey, NJ, USA: Pearson Education.

    Google Scholar 

  • Briggs, A., & Fenn, P. (1998). Confidence intervals or surfaces? Uncertainty on the cost-effectiveness plane. Health Economics, 7, 723–740. DOI: 10.1002/(sici)1099-1050(199812)7:8〈723::aid-hec392〉3.0.co;2-o.

    Article  CAS  Google Scholar 

  • Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32, 33–177. DOI: 10.1016/j.progsolidstchem.2004.08.001.

    Article  CAS  Google Scholar 

  • Compernolle, T., Van Passel, S., Weyens, N., Vangronsveld, J., Lebbe, L., & Thewys, T. (2012). Groundwater remediation and the cost effectiveness of phytoremediation. International Journal of Phytoremediation, 14, 861–877. DOI: 10.1080/15226514.2011.628879.

    Article  CAS  Google Scholar 

  • Doudrick, K., Monzón, O., Mangonon, A., Hristovski, K., & Westerhoff, P. (2012). Nitrate reduction in water using com mercial titanium dioxide photocatalysts (P25, P90 and hombikat UV100). Journal of Environmental Engineering, 138, 852–861. DOI: 10.1061/(asce)ee.1943-7870.0000529.

    CAS  Google Scholar 

  • Fujishima, A., & Zhang, X. T. (2006). Titanium dioxide photocatalysis: Present situation and future approaches. Comptes Rendus Chimie, 9, 750–760. DOI: 10.1016/j.crci.2005.02.055.

    Article  CAS  Google Scholar 

  • Hansen, W. J., Orth, K. D., & Robinson, R. K. (1998). Cost effectiveness and incremental cost analyses: Alternative to benefit-cost analysis for environmental remediation projects. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, 2, 8–12. DOI: 10.1061/(asce)1090-025x(1998)2:1(8).

    Article  Google Scholar 

  • Jammaer, J., Aprile, C., Verbruggen, S. W., Lenaerts, S., Pescarmona, P. P., & Martens, J. A. (2011). A non-aqueous synthesis of TiO2/SiO2 composites in supercritical CO2 for the photodegradation of pollutants. ChemSusChem, 4, 1457–1463. DOI: 10.1002/cssc.201100059.

    Article  CAS  Google Scholar 

  • Kwong, C.W., Chao, C. Y. H., Hui, K. S., & Wan, M. P. (2008). Removal of VOCs from indoor environment by ozonation over different porous materials. Atmospheric Environment, 42, 2300–2311. DOI: 10.1016/j.atmosenv.2007.12.030.

    Article  CAS  Google Scholar 

  • Löthgren, M., & Zethraeus, N. (2000). Definition, interpretation and calculation of cost-effectiveness acceptability curves. Health Economics, 9, 623–630. DOI: 10.1002/1099-1050(200010)9:7〈623::aid-hec539〉3.0.co;2-v.

    Article  Google Scholar 

  • Mo, J. H., Zhang, Y. P., Xu, Q. J., Lamson, J. J., & Zhao, R. Z. (2009). Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment, 43, 2229–2246. DOI: 10.1016/j.atmosenv.2009.01.034.

    Article  CAS  Google Scholar 

  • Ohtani, B., Prieto-Mahaney, O. O., Li, D., & Abe, R. (2010). What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry, 216, 179–182. DOI: 10.1016/j.jphotochem.2010.07.024.

    Article  CAS  Google Scholar 

  • Saha, S., Wang, J. M., & Pal, A. (2012). Nano silver impregnation on commercial TiO2 and a comparative photocatalytic account to degrade malachite green. Separation and Purification Technology, 89, 147–159. DOI: 10.1016/j.seppur.2012.01.012.

    Article  CAS  Google Scholar 

  • Sopyan, I., Watanabe, M., Murasawa, S., Hashimoto, K., & Fujishima, A. (1996). An efficient TiO2 thin-film photocatalyst: Photocatalytic properties in gas-phase acetaldehyde degradation. Journal of Photochemistry and Photobiology A: Chemistry, 98, 79–86. DOI: 10.1016/1010-6030(96)04328-6.

    Article  CAS  Google Scholar 

  • Sopyan, I. (2007). Kinetic analysis on photocatalytic degradation of gaseous acetaldehyde, ammonia and hydrogen sulfide on nanosized porous TiO2 films. Science and Technology of Advanced Materials, 8, 33–39. DOI: 10.1016/j.stam.2006.10.004.

    Article  CAS  Google Scholar 

  • Su, R., Bechstein, R., S, Esbjörnsson, B., Palmqvist, A., & Besenbacher, F. (2011). How the anatase-to-rutile ratio influences the photoreactivity of TiO2. The Journal of Physical Chemistry C, 115, 24287–24292. DOI: 10.1021/jp2086768.

    Article  CAS  Google Scholar 

  • Tytgat, T., Hauchecorne, B., Smits, M., Verbruggen, S. W., & Lenaerts, S. (2012). Concept and validation of a fully automated photocatalytic test setup. Journal of Laboratory Automation, 17, 134–143. DOI: 10.1177/2211068211424554.

    CAS  Google Scholar 

  • Van Durme, J., Dewulf, J., Sysmans, W., Leys, C., & Van Langenhove, H. (2007). Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Applied Catalysis B: Environmental, 74, 161–169. DOI: 10.1016/j.apcatb.2007.02.006.

    Article  Google Scholar 

  • Van Wesenbeeck, K., Hauchecorne, B., & Lenaerts, S. (2013). Integration of a photocatalytic coating in a corona discharge unit for plasma assisted catalysis. Journal of Environmental Solutions, 2, 16–24.

    Google Scholar 

  • Verbruggen, S. W., Ribbens, S., Tytgat, T., Hauchecorne, B., Smits, M., Meynen, V., Cool, P., Martens, J. A., & Lenaerts, S. (2011). The benefit of glass bead supports for efficient gas phase photocatalysis: Case study of a commercial and a synthesised photocatalyst. Chemical Engineering Journal, 174, 318–325. DOI: 10.1016/j.cej.2011.09.038.

    Article  CAS  Google Scholar 

  • Verbruggen, S. W., Masschaele, K., Moortgat, E., Korany, T. E., Hauchecorne, B., Martens, J. A., & Lenaerts, S. (2012). Factors driving the activity of commercial titanium dioxide powders towards gas phase photocatalytic oxidation of acetaldehyde. Catalysis Science & Technology, 2, 2311–2318. DOI: 10.1039/c2cy20123b.

    Article  CAS  Google Scholar 

  • Xu, J. H., & Shiraishi, F. (1999). Photocatalytic decomposition of acetaldehyde in air over titanium dioxide. Journal of Chemical Technology & Biotechnology, 74, 1096–1100. DOI: 10.1002/(sici)1097-4660(199911)74:11〈1096::aidjctb145〉3.0.co;2-v.

    Article  CAS  Google Scholar 

  • Yu, Q. L., Ballari, M. M., & Brouwers, H. J. H. (2011). Heterogeneous photocatalysis applied to indoor building material: Towards an improved indoor air quality. Advanced Materials Research, 255–260, 2836–2840. DOI: 10.4028/www.scientific.net/amr.255-260.2836.

    Article  Google Scholar 

  • Zhang, Y. P., Yang, R., & Zhao, R. Z. (2003). A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds. Atmospheric Environment, 37, 3395–3399. DOI: 10.1016/s1352-2310(03)00357-1.

    Article  CAS  Google Scholar 

  • Zhang, Y. P., Mo, J. H., Li, Y. G., Sundell, J., Wargocki, P., Zhang, J. S., Little, J. C., Corsi, R., Deng, Q. H., & Leung, M. H. K. (2011). Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmospheric Environment, 45, 4329–4343. DOI: 10.1016/j.atmosenv.2011.05.041.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sammy W. Verbruggen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbruggen, S.W., Tytgat, T., Van Passel, S. et al. Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air. Chem. Pap. 68, 1273–1278 (2014). https://doi.org/10.2478/s11696-014-0557-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0557-3

Keywords

Navigation