Skip to main content
Log in

Scale-adaptive simulation of liquid mixing in an agitated vessel equipped with eccentric HE 3 impeller

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The current study presents the results of a numerical simulation of hydrodynamics in an agitated vessel equipped with an eccentric HE 3 impeller. CFD (computational fluid dynamics) simulations were carried out using ANSYS 14.0 software. Time-dependent simulations of turbulent flow were carried out using the SAS-SST (scale adaptive simulation-shear stress transport) method coupled with the SM (sliding mesh) method. The results of the calculations are presented as contours of velocity in different cross-sections of the agitated vessel, as well as profiles of components of velocity vector and turbulence kinetic energy and its dissipation rate. The iso-surface of vorticity, which shows the region of possible vortex existence, is also presented. A numerically obtained data set of impeller power number was used to calculate the averaged impeller power number. This value was compared with the experimental data with good results. The relationship between impeller position and fluctuation of the impeller power number was also analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, M. M., Arratia, P. E., & Muzzio, F. J. (2002). Laminar mixing in eccentric stirred tank systems. The Canadian Journal of Chemical Engineering, 80, 546–557. DOI: 10.1002/cjce.5450800418.

    Article  CAS  Google Scholar 

  • Ascanio, G., Brito-Bazán, M., Brito-De La Fuente, E., Carreau, P. J., & Tanguy, P. A. (2002). Unconventional configuration studies to improve mixing times in stirred tanks. The Canadian Journal of Chemical Engineering, 80, 558–565. DOI: 10.1002/cjce.5450800419.

    Article  CAS  Google Scholar 

  • Bulnes-Abundis, D., Carrillo-Cocom, L. M., Aráiz-Hernández, D., García-Ulloa, A., Granados-Pastor, M., Sánchez-Arreola, P. B., Murugappan, G., & Alvarez, M. M. (2013). A simple eccentric stirred tank mini-bioreactor: Mixing characterization and mammalian cell culture experiments. Biotechnology and Bioengineering, 110, 1106–1118. DOI: 10.1002/bit.24780.

    Article  CAS  Google Scholar 

  • Cabaret, F., Fradette, L., & Tanguy, P. A. (2008). Effect of shaft eccentricity on the laminar mixing performance of a radial impeller. The Canadian Journal of Chemical Engineering, 86, 971–977. DOI: 10.1002/cjce.20103.

    Article  CAS  Google Scholar 

  • Celik, I. B., Ghia, U., Roache, P. J., Freitas, Ch. J., Coleman, H., & Raad, P. E. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, 130(7), 078001. DOI: 10.1115/1.2960953.

    Article  Google Scholar 

  • Sánchez Cervantes, M. I., Lacombe, J., Muzzio, F. J., & Álvarez, M. M. (2006). Novel bioreactor design for the culture of suspended mammalian cells. Part I: Mixing characterization. Chemical Engineering Science, 61, 8075–8084. DOI: 10.1016/j.ces.2006.09.035.

    Article  Google Scholar 

  • Cudak, M. (2004). Heat and momentum transfer in agitated vessel equipped with eccentric impeller. Ph.D. thesis, Technical University of Szczecin, Szczecin, Poland. (in Polish)

    Google Scholar 

  • Cudak, M., & Karcz, J. (2006). Momentum transfer in an agitated vessel with off-centred impellers. Chemical Papers, 60, 375–380. DOI: 10.2478/s11696-006-0068-y.

    Article  CAS  Google Scholar 

  • Cudak, M., & Karcz, J. (2008). Distribution of local heat transfer coefficient values in the wall region of an agitated vessel. Chemical Papers, 62, 92–99. DOI: 10.2478/s11696-007-0084-6.

    Article  CAS  Google Scholar 

  • Cudak, M., & Karcz, J. (2011). Local momentum transfer process in a wall region of an agitated vessel equipped with an eccentric impeller. Industrial & Engineering Chemistry Research, 50, 4140–4149. DOI: 10.1021/ie101977y.

    Article  CAS  Google Scholar 

  • Cudak, M., & Karcz, J. (2013). The effects of eccentricity of axial flow impeller on the momentum transfer proces in an agitated vessel. Experimental Thermal and Fluid Science, 44, 385–391. DOI: 10.1016/j.expthermflusci.2012.07.010.

    Article  Google Scholar 

  • Egorov, Y., Menter, F. R., Lechner, R., & Cokljat, D. (2010). The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: Application to complex flows. Flow, Turbulence and Combustion, 85, 139–165. DOI: 10.1007/s10494-010-9265-4.

    Article  Google Scholar 

  • Galletti, C., & Brunazzi, E. (2008). On the main flow features and instabilities in an unbaffled vessel agitated with an eccentrically located impeller. Chemical Engineering Science, 63, 4494–4505. DOI: 10.1016/j.ces.2008.06.007.

    Article  CAS  Google Scholar 

  • Galletti, C., Pintus, S., & Brunazzi, E. (2009). Effect of shaft eccentricity and impeller blade thickness on the vortices features in an unbaffled vessel. Chemical Engineering Research and Design, 87, 391–400. DOI: 10.1016/j.cherd.2008.11.013.

    Article  CAS  Google Scholar 

  • Hall, J. F., Barigou, M., Simmons, M. J. H., & Stitt, E. H. (2004). Mixing in unbaffled high-throughput experimentation reactors. Industrial & Engineering Chemistry Research, 43, 4149–4158. DOI: 10.1021/ie049872q.

    Article  CAS  Google Scholar 

  • Hall, J. F., Barigou, M., Simmons, M. J. H., & Stitt, E. H. (2005). Comparative study of different mixing strategies in small high throughput experimentation reactors. Chemical Engineering Science, 60, 2355–2368. DOI: 10.1016/j.ces.2004.10-045.

    Article  CAS  Google Scholar 

  • Karcz, J., & Cudak, M. (2002). Efficiency of the heat transfer process in a jacketed agitated vessel equipped with an eccentrically located impeller. Chemical Papers, 56, 382–386.

    CAS  Google Scholar 

  • Karcz, J., & Szoplik, J. (2004). An effect of the eccentric position of the propeller agitator on the mixing time. Chemical Papers, 58, 9–14.

    CAS  Google Scholar 

  • Karcz, J., Cudak, M., & Szoplik, J. (2005). Stirring of a liquid in a stirred tank with an eccentrically located impeller. Chemical Engineering Science, 60, 2369–2380. DOI: 10.1016/j.ces.2004.11.018.

    Article  CAS  Google Scholar 

  • Karcz, J., Domanski, M., Bitenc, M., & Kacperski, L. (2011). Numerical modeling of the hydrodynamics in an agitated vessel with an eccentrically located propeller. Przemysl Chemiczny, 90(9), 1651–1655.

    CAS  Google Scholar 

  • Karcz, J., Dománski, M., & Bitenc, M. (2012). Numerical modelling of the hydrodynamics in an agitated vessel with an eccentrically located HE 3 impeller. In Proceedings of the 14th European Conference on Mixing, September 10–13, 2012 (pp. 199–204). Warszawa, Poland.

    Google Scholar 

  • Menter, F. R., & Egorov, Y. (2010). The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description. Flow, Turbulence and Combustion, 85, 113–138. DOI: 10.1007/s10494-010-9264-5.

    Article  Google Scholar 

  • Montante, G., Bakker, A., Paglianti, A., & Magelli, F. (2006). Effect of the shaft eccentricity on the hydrodynamics of unbaffled stirred tanks. Chemical Engineering Science, 61, 2807–2814. DOI: 10.1016/j.ces.2005.09.021.

    Article  CAS  Google Scholar 

  • Rivera, C., Heniche, M., Ascanio, G., & Tanguy, P. (2004). A virtual finite element model for centered and eccentric mixer configurations. Computers & Chemical Engineering, 28, 2459–2468. DOI: 10.1016/j.compchemeng.2004.06.012.

    Article  CAS  Google Scholar 

  • Singh, H., Fletcher, D. F., & Nijdam, J. J. (2011). An assessment of different turbulence models for predicting flow in a baffled tank stirred with a Rushton turbine. Chemical Engineering Science, 66, 5976–5988. DOI: 10.1016/j.ces.2011.08.018.

    Article  CAS  Google Scholar 

  • Stręk, F. (1981). Agitation and agitated vessels (2 ed.). Warszawa, Poland: WNT. (in Polish)

    Google Scholar 

  • Szoplik, J., & Karcz, J. (2004). Studies of the mixing time within the transitional regime of the viscous liquid flow in a stirred tank with an eccentrically located propeller. Chemical and Process Engineering, 25, 1663–1669.

    Google Scholar 

  • Szoplik, J., & Karcz, J. (2005). An efficiency of the liquid homogenization in agitated vessels equipped with off-centred impeller. Chemical Papers, 59, 373–379.

    CAS  Google Scholar 

  • Szoplik, J., & Karcz, J. (2008). Mixing time of a non-Newtonian liquid in an unbaffled agitated vessel with an eccentric propeller. Chemical Papers, 62, 70–77. DOI: 10.2478/s11696-007-0081-9.

    Article  CAS  Google Scholar 

  • Woziwodzki, S., Broniarz-Press, L., & Ochowiak, M. (2010). Effect of eccentricity on transitional mixing in vessel equipped with turbine impellers. Chemical Engineering Research and Design, 88, 1607–1614. DOI: 10.1016/j.cherd.2010.04.007.

    Article  CAS  Google Scholar 

  • Woziwodzki, S., & Jędrzejczak, L. (2011). Effect of eccentricity on laminar mixing in vessel stirred by double turbine impellers. Chemical Engineering Research and Design, 89, 2268–2278. DOI: 10.1016/j.cherd.2011.04.004.

    Article  CAS  Google Scholar 

  • Xuereb, C., & Bertrand, J. (1996). 3-D hydrodynamics in a tank stirred by a double-propeller system and filled with a liquid having evolving rheological properties. Chemical Engineering Science, 51, 1725–1734. DOI: 10.1016/0009-2509(96)00031-0.

    Article  CAS  Google Scholar 

  • Yang, F. L., Zhou, S. J., & Wang, G. C. (2012). Detached eddy simulation of the liquid mixing in stirred tanks. Computers & Fluids, 64, 74–82. DOI: 10.1016/j.compfluid.2012.05.005.

    Article  Google Scholar 

  • Zhang, M. X., Hu, Y. Y., Wang, W. T., Shao, T., & Cheng, Y. (2013). Intensification of viscous fluid mixing in eccentric stirred tank systems. Chemical Engineering and Processing: Process Intensification, 66, 36–43. DOI: 10.1016/j.cep.2013.01.006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Karcz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dománski, M., Karcz, J. & Bitenc, M. Scale-adaptive simulation of liquid mixing in an agitated vessel equipped with eccentric HE 3 impeller. Chem. Pap. 68, 899–912 (2014). https://doi.org/10.2478/s11696-014-0546-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0546-6

Keywords

Navigation