Skip to main content
Log in

Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The influence of cetyltrimethylammonium bromide and ethylene glycol on the size and dispersion of indium oxide nanoparticles prepared under hydrothermal conditions was investigated. The precursor compound, indium hydroxide, obtained by the hydrothermal method in the absence as well as the presence of cetyltrimethylammonium bromide, was converted to indium oxide by sintering at 400°C. The formation of nanoscale indium oxide upon sintering was ascertained by the characteristic infrared adsorption bands and X-ray diffraction patterns of indium oxide. Transmission electron microscopy and band gap values confirmed that the cetyltrimethylammonium bromide facilitated the formation of indium oxide nanoparticles smaller in size and narrower in distribution than those prepared without the assistance of cetyltrimethylammonium bromide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avivi, S., Mastai, Y., & Gedanken, A. (2000). Sonohydrolysis of In+3 ions: Formation of needlelike particles of indium hydroxide. Chemistry of Materials, 12, 1229–1233. DOI: 10.1021/cm9903677.

    Article  CAS  Google Scholar 

  • Blažzević, N., Kolbah, D., Belin, B., Šunjić, V., & Kajfez, F. (1979). Hexamethylenetetramine, a versatile reagent in organic synthesis. Synthesis, 1979, 161–176. DOI: 10.1055/s-1979-28602.

    Article  Google Scholar 

  • Cullity, B. D., & Stock, S. R. (2001). Elements of X-ray diffraction (3rd ed.). Houston, TX, USA: Prentice Hall.

    Google Scholar 

  • Davis, E. A., & Mott, N. F. (1970). Conduction in noncrystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philosophical Magazine, 22, 903–922. DOI: 10.1080/14786437008221-061.

    Article  CAS  Google Scholar 

  • Elouali, S., Bloor, L. G., Binions, B., Parkin, I. P., Carmalt, C. J., & Darr, J. A. (2012). Gas sensing with nano-indium oxides (In2O3) prepared via continuous hydrothermal flow synthesis. Langmuir, 28, 1879–1885. DOI: 10.1021/la203565h.

    Article  CAS  Google Scholar 

  • Eranna, G., Joshi, B. C., Runthala, D. P., & Gupta, R. P. (2004). Oxide materials for development of integrated gas sensors-A comprehensive review. Critical Reviews in Solid State and Materials Sciences, 29, 111–188. DOI: 10.1080/10408430490888977.

    Article  CAS  Google Scholar 

  • Gopchandran, K. G., Joseph, B., Abraham, J. T., Koshy, P., & Vaidyan, V. K. (1997). The preparation of transparent electrically conducting indium oxide films by reactive vacuum evaporation. Vacuum, 48, 547–550. DOI: 10.1016/s0042-207x(97)00023-7.

    Article  CAS  Google Scholar 

  • Granqvist, C. G. (1993). Transparent conductive electrodes for electrochromic devices: A review. Applied Physics A, 57, 19–24. DOI: 10.1007/bf00331211.

    Article  Google Scholar 

  • Guha, P., Kar, S., & Chaudhuri, S. (2004). Direct synthesis of single crystalline In2O3 nanopyramids and nanocolumns and their photoluminescence properties. Applied Physics Letters, 85, 3851–3853. DOI: 10.1063/1.1808886.

    Article  CAS  Google Scholar 

  • Guo, L. J., Shen, X. P., Zhu, G. X., & Chen, K. M. (2011). Preparation and gas-sensing performance of In2O3 porous nanoplatelets. Sensors and Actuators B: Chemical, 155, 752–758. DOI: 10.1016/j.snb.2011.01.042.

    Article  CAS  Google Scholar 

  • Hamburg, I., & Granqvist, C. G. (1986). Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows. Journal of Applied Physics, 60, R123–R159. DOI: 10.1063/1.337534.

    Article  Google Scholar 

  • Hayashi, H., & Hakuta, Y. (2010). Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials, 3, 3794–3817. DOI: 10.3390/ma3073794.

    Article  CAS  Google Scholar 

  • Ho, C. M., Yu, J. C., Kwong, T., Mak, A. C., & Lai, S. I. (2005). Morphology-controllable synthesis of mesoporous CeO2 nano-and microstructures. Chemistry of Materials, 17, 4514–4522. DOI: 10.1021/cm0507967.

    Article  CAS  Google Scholar 

  • Ho, W. H., & Yen, S. K. (2006). Preparation and characterization of indium oxide film by electrochemical deposition. Thin Solid Films, 498, 80–84. DOI: 10.1016/j.tsf.2005.07.072.

    Article  CAS  Google Scholar 

  • Huang, C. C., & Yeh, C. S. (2008). Porous cube like In2O3 nanoparticles and their sensing characteristics towards ethanol. Journal of Materials Science and Technology, 24, 667–674.

    Article  Google Scholar 

  • Jiang, X. C., Wang, Y. L., Herricks, T., & Xia, Y. N. (2004). Ethylene glycol-mediated synthesis of metal oxide nanowires. Journal of Materials Chemistry, 14, 695–703. DOI: 10.1039/b313938g.

    Article  CAS  Google Scholar 

  • Jiang, L. H., Sun, G. Q., Zhou, Z. H., Sun, S. G., Wang, Q., Yan, S. Y., Li, H. Q., Tian, J., Guo, J. S., Zhou, B., & Xin, Q. (2005). Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts. Journal of Physical Chemistry B, 109, 8774–8778. DOI: 10.1021/jp050334g.

    Article  CAS  Google Scholar 

  • Kakihana, M., Arima, M., Yoshimura, M., Ikeda, N., & Sugitani, Y. (1999). Synthesis of high surface area LaMnO3+d by a polymerizable complex method. Journal of Alloys and Compounds, 283, 102–105. DOI: 10.1016/s0925-8388(98)00865-2.

    Article  CAS  Google Scholar 

  • Kumar, M., Singh, V. N., Singh, F., Lakshmi, K. V., Mehta, B. R., & Singh, J. P. (2008). On the origin of photoluminescence in indium oxide octahedron structures. Applied Physics Letters, 92, 171907–171911. DOI: 10.1063/1.2910501.

    Article  CAS  Google Scholar 

  • Kundu, S., & Biswas, P. K. (2005). Synthesis and photoluminescence property of nanostructured sol-gel indium tin oxide films on glass. Chemical Physics Letters, 414, 107–110. DOI: 10.1016/j.cplett.2005.08.062.

    Article  CAS  Google Scholar 

  • Lee, S. J., Biegalski, M. D., & Kriven, W. M. (1999). Powder synthesis of barium titanate and barium orthotitanate via an ethylene glycol polymerization route. Journal of Materials Research, 14, 3001–3006. DOI: 10.1557/jmr.1999.0403.

    Article  CAS  Google Scholar 

  • Lei, Z. B., Ma, G. J., Liu, M. Y., You, W. S., Yan, H. J., Wu, G. P., Takata, T., Hara, M., Domen, K., & Li, C. (2006). Sulfur-substituted and zinc-doped In(OH)3: A new class of catalyst for photocatalytic H2 production from water under visible light illumination. Journal of Catalysis, 237, 322–329. DOI: 10.1016/j.jcat.2005.11.022.

    Article  CAS  Google Scholar 

  • Li, Y. F., Jiang, J. Y., Ma, Y. J., Fan, G. C., Huang, Z. Y., Ban, C. X., & Qin, L. A. (2010a). Single microemulsion-based hydrothermal approach to In(OH)3 and In2O3 nanocubes. Chinese Journal of Chemistry, 28, 2188–2192. DOI: 10.1002/cjoc.201090361.

    Article  CAS  Google Scholar 

  • Li, C. G., Lian, S. Y., Liu, Y., Liu, S. X., & Kang, Z. H. (2010b). Preparation and photoluminescence study of mesoporous indium hydroxide nanorods. Materials Research Bulletin, 45, 109–112. DOI: 10.1016/j.materresbull.2009.10.002.

    Article  CAS  Google Scholar 

  • Liu, X. H., Zhou, L. B., Yi, R., Zhang, N., Shi, R. R., Gao, G. H., & Qiu, G. Z. (2008) Single-crystalline indium hydroxide and indium oxide microcubes: Synthesis and characterization. Journal of Physical Chemistry C, 112, 18426–18430. DOI: 10.1021/jp802778p.

    Article  CAS  Google Scholar 

  • Liu, G. D. (2011). Synthesis, characterization of In2O3 nanocrystals and their photoluminescence property. International Journal of Electrochemical Science, 6, 2162–2170.

    CAS  Google Scholar 

  • Marques, V. S., Cavalcante, L. S., Sczancoski, J. C., Alcântara, A. F. P., Orlandi, M. O., Moraes, E., Longo, E., Varela, J. A., Li, M. S., & Santos, M. R. M. C. (2010). Effect of different solvent ratios (water/ethylene glycol) on the growth process of CaMoO4 crystals and their optical properties. Crystal Growth and Design, 10, 4752–4768. DOI: 10.1021/cg100584b.

    Article  CAS  Google Scholar 

  • Niederberger, M., Garnweitner, G., Buha, J., Polleux, J., Ba, J. H., & Pinna, N. (2006). Nonaqueous synthesis of metal oxide nanoparticles: Review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. Journal of Sol-Gel Science and Technology, 40, 259–266. DOI: 10.1007/s10971-006-6668-8.

    Article  CAS  Google Scholar 

  • Ohhata, Y., Shinoki, F., & Yoshida, S. (1979). Optical properties of r.f. reactive sputtered tin-doped In2O3 films. Thin Solid Films, 59, 255–261. DOI: 10.1016/0040-6090(79)90298-0.

    Article  CAS  Google Scholar 

  • Peng, X. S., Meng, G. W., Zang, J., Wang, X. F., Wang, Y. W., Wang, C. Z., & Zhang, L. D. (2002). Synthesis and photoluminescence of single-crystalline In2O3 nanowires. Journal of Materials Chemistry, 12, 1602–1605. DOI: 10.1039/b111315a.

    Article  CAS  Google Scholar 

  • Pinna, N., Grancharov, S., Beato, P., Bonville, P., Antonietti, M., & Niederberger, M. (2005). Magnetite nanocrystals: Nonaqueous synthesis, characterization and solubility. Chemistry of Materials, 17, 3044–3049. DOI: 10.1021/cm050060+.

    Article  CAS  Google Scholar 

  • Rumyantseva, M. N., Ivanov, V. K., Shaporev, A. S., Rudyi, Y. M., Yushchenko, V. V., Arbiol, J., & Gas’kov, A. M. (2009). Microstructure and sensing properties of nanocrystalline indium oxide prepared using hydrothermal treatment. Russian Journal of Inorganic Chemistry, 54, 163–171. DOI: 10.1134/s0036023609020016.

    Article  Google Scholar 

  • Seo, W. S., Jo, H. H., Lee, K., & Park, J. T. (2003). Preparation and optical properties of highly crystalline, colloidal, and size-controlled indium oxide nanoparticles. Advanced Materials, 15, 795–797. DOI: 10.1002/adma.200304568.

    Article  CAS  Google Scholar 

  • Shigesato, Y., Takaki, S., & Haranoh, T. (1992). Electrical and structural properties of low resistivity tin-doped indium oxide films. Journal of Applied Physics, 71, 3356–3364. DOI: 10.1063/1.350931.

    Article  CAS  Google Scholar 

  • Souza, E. C. C., & Muccillo, E. N. S. (2006). Characterization of indium oxide nanoparticles prepared by soft chemistry route. In P. Vincenzini (Ed.), Advances in science and technology (pp. 248–253). Zürich, Switzerland: Trans Tech Publications.

    Google Scholar 

  • Souza, E. C. C., Rey, J. F. Q., & Muccillo, E. N. S. (2009). Synthesis and characterization of spherical and narrow size distribution indium oxide nanoparticles. Applied Surface Science, 255, 3779–3783. DOI: 10.1016/j.apsusc.2008.10.039.

    Article  CAS  Google Scholar 

  • Steffes, H., Imawan, C., Sozbacher, F., & Obermeier, E. (2001). Enhancement of NO2 sensing properties of In2O3-based thin films using an Au or Ti surface modification. Sensors and Actuators B: Chemical, 78, 106–112. DOI: 10.1016/s0925-4005(01)00799-7.

    Article  CAS  Google Scholar 

  • Takada, T., Suzuki, K., & Nakane, M. (1993). Highly sensitive ozone sensor. Sensors and Actuators B: Chemical, 13, 404–407. DOI: 10.1016/0925-4005(93)85412-4.

    Article  CAS  Google Scholar 

  • Tanaka, S., & Esaka, T. (2001). Characterization of NOx sensor using doped In2O3. Journal of Materials Research, 16, 1389–1395. DOI: 10.1557/jmr.2001.0194.

    Article  CAS  Google Scholar 

  • Tao, X. J., Sun, L., Li, Z. W., & Zhao, Y. B. (2010). Sideby- side In(OH)3 and In2O3 nanotubes: Synthesis and optical properties. Nanoscale Research Letters, 5, 383–388. DOI: 10.1007/s11671-009-9493-5.

    Article  CAS  Google Scholar 

  • Tseng, T. T., & Tseng, W. J. (2009). Effect of polyvinylpyrrolidone on morphology and structure of In2O3 nanorods by hydrothermal synthesis. Ceramics International, 35, 2837–2844. DOI: 10.1016/j.ceramint.2009.03.028.

    Article  CAS  Google Scholar 

  • Xu, X. M., Zhao, P. L., Wang, D.W., Sun, P., You, L., Sun, Y. F., Liang, X. H., Liu, F. M., Chen, H., & Lu, G. Y. (2013). Preparation and gas sensing properties of hierarchical flowerlike In2O3 microspheres. Sensors and Actuators B: Chemical, 176, 405–412. DOI: 10.1016/j.snb.2012.10.091.

    Article  CAS  Google Scholar 

  • Yang, J., Lin, C. K., Wang, Z. L., & Lin, J. (2006). In(OH)3 and In2O3 nanorod bundles and spheres: Microemulsion mediated hydrothermal synthesis and luminescence properties. Inorganic Chemistry, 45, 8973–8979. DOI: 10.1021/ic060934+.

    Article  CAS  Google Scholar 

  • Yang, J., Frost, R. L., & Martens, W. N. (2010). Thermogravimetric analysis and hot-stage Raman spectroscopy of cubic indium hydroxide. Journal of Thermal Analysis and Calorimetry, 100, 109–116. DOI: 10.1007/s10973-009-0554-x.

    Article  CAS  Google Scholar 

  • Yang, J. J., Cheng, H. F., Martens, W. N., & Frost, R. L. (2011). Application of infrared emission spectroscopy to the thermal transition of indium hydroxide to indium oxide nanocubes. Applied Spectroscopy, 65, 113–118. DOI: 10.1366/10-06082.

    Article  CAS  Google Scholar 

  • Yin, W. Y., Su, J., Cao, M. H., Ni, C. Y., Cloutier, S. G., Huang, Z. G., Ma, X., Ren, L., Hu, C. W., & Wei, B. Q. (2009). In(OH)3 and In2O3 micro/nanostructures: Controllable NaOAc-assisted microemulsion synthesis and Raman properties. Journal of Physical Chemistry C, 113, 19493–19499. DOI: 10.1021/jp906328z.

    Article  CAS  Google Scholar 

  • Zhang, Y. F., Li, J. Y., Li, Q., Zhu, L., Liu, X. D., Zhong, X. H., Meng, J., & Cao, X. Q. (2007). Preparation of In2O3 ceramic nanofibers by electrospinning and their optical properties. Scripta Materialia, 56, 409–412. DOI: 10.1016/j.scriptamat.2006.10.032.

    Article  CAS  Google Scholar 

  • Zhao, Y. B., Zhang, Z. J., Wu, Z. S., & Dang, H. X. (2004). Synthesis and characterization of single crystalline In2O3 nanocrystals via solution dispersion. Langmuir, 20, 27–29. DOI: 10.1021/la035212z.

    Article  CAS  Google Scholar 

  • Zhou, H. J., Cai, W. P., & Zhang, L. (1999). Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica. Applied Physics Letters, 75, 495–497. DOI: 10.1063/1.124427.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmaraj Nallasamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhanasingh, S., Nallasamy, D., Padmanapan, S. et al. Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method. Chem. Pap. 68, 1079–1086 (2014). https://doi.org/10.2478/s11696-014-0543-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0543-9

Keywords

Navigation