Skip to main content
Log in

Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are enzymes expressed in the human body under physiological conditions. AChE is an important part of the cholinergic nerves where it hydrolyses neurotransmitter acetylcholine. Both cholinesterases are sensitive to inhibitors acting as neurotoxic compounds. In analytical applications, the enzymes can serve as a biorecognition element in biosensors as well as simple disposable sensors (dipsticks) and be used for assaying the neurotoxic compounds. In the present review, the mechanism of AChE and BChE inhibition by disparate compounds is explained and methods for assaying the enzymes activity are shown. Optical, electrochemical, and piezoelectric biosensors are described. Attention is also given to the application of sol-gel techniques and quantum dots in the biosensors’ construction. Examples of the biosensors are provided and the pros and cons are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akoh, C. C., Lee, G. C., Liaw, Y. C., Huang, T. H., & Shaw, J. F. (2004) GDSL family of serine esterases/lipases. Progress in Lipid Research, 43, 534–552. DOI: 10.1016/j.plipres.2004.09.002.

    Article  CAS  Google Scholar 

  • Andreescu, S., & Marty, J. L. (2006) Twenty years research in Cholinesterase biosensors: From basic research to practical applications. Biomolecular Engineering, 23, 1–15. DOI: 10.1016/j.bioeng.2006.01.001.

    Article  CAS  Google Scholar 

  • Arduini, F., Amine, A., Moscone, D., & Palleschi, G. (2010) Biosensors based on cholinesterase inhibition for insecticides, nerve agents and anatoxin B1 detection (review). Microchimica Acta, 170, 193–214. DOI: 10.1007/s00604-010-0317-1.

    Article  CAS  Google Scholar 

  • Arkhypova, V. N., Dzyadevych, S. V., Soldatkin, A. P., El’skaya, A. V., Martelet, C., & Jaffrezic-Renault, N. (2003) Development and optimisation of biosensors based on pH-sensitive field effect transistors and cholinesterases for sensitive detection of solanaceous glycoalkaloids. Biosensors and Bioelectronics, 18, 1047–1053. DOI: 10.1016/s0956-5663(02)00222-1.

    Article  CAS  Google Scholar 

  • Assis, C. R. D., Castro, P. F., Amaral, I. P. G., Carvalho, E. V. M. M., Carvalho, L. B., Jr., & Bezerra, R. S. (2010) Characterization of acetylcholinesterase from the brain of the Amazonian tambaqui (Colossoma macropomum) and in vitro effect of organophosphorus and carbamate pesticides. Enviromental Toxicology and Chemistry, 29, 2243–2248. DOI: 10.1002/etc.272.

    Article  CAS  Google Scholar 

  • Axelsen, P. H., Harel, M., Silman, I., & Sussman, J. L. (1994) Structure and dynamics of the active site gorge of acetyl-cholinesterase: Synergistic use of molecular dynamics simulation and X-ray crystallography Protein Science, 3, 188–197. DOI: 10.1002/pro.5560030204.

    Article  CAS  Google Scholar 

  • Bai, D. L., Tang, X. C., & He, X. C. (2000) Huperzine A, a potential therapeutic agent for treatment of Alzheimer’s disease. Current Medicinal Chemistry, 7, 355–374. DOI: 10.2174/0929867003375281.

    Article  CAS  Google Scholar 

  • Bellier, J. P., & Kimura, H. (2011) Peripheral type of choline acetyltransferase: Biological and evolutionary implications for novel mechanisms in cholinergic system. Journal of Chemical Neuroanatomy, 42, 225–235. DOI: 10.1016/j.jchemneu.2011.02.005.

    Article  CAS  Google Scholar 

  • Benilova, I. V., Arkhypova, V. N., Dzyadevych, S. V., Jaffrezic-Renault, N., Martelet, C., & Soldatkin, A. P. (2006) Kinetics of human and horse sera cholinesterases inhibition with solanaceous glycoalkaloids: Study by potentiometric biosensor. Pesticide Biochemistry and Physiology, 86, 203–210. DOI: 10.1016/j.pestbp.2006.04.002.

    Article  CAS  Google Scholar 

  • Berg, L., Andersson, C. D., Artursson, E., Hörnberg, A., Tunemalm, A.K., Linusson, A., & Ekström, F. (2011) Targeting acetylcholinesterase: Identification of chemical leads by high throughput screening, structure determination and molecular modeling. PLoS One, 6, e26039. DOI: 10.1371/journal.pone.0026039.

    Article  CAS  Google Scholar 

  • Bertok, T., Klukova, L., Sediva, A., Kasák, P., Semak, V., Micusik, M., Omastova, M., Chovanová, M., Vlček, M., Imrich, R., Vikartovska, A., & Tkac, J. (2013) Ultrasensitive impedimetric lectin biosensors with efficient antifouling properties applied in glycoprofiling of human serum samples. Analytical Chemistry, 85, 7324–7332. DOI: 10.1021/ac401281t.

    Article  CAS  Google Scholar 

  • Bobrowski, A., & Zarębski, J. (2012) Review of the catalytic voltammetric determination of titanium traces. Acta Chimica Slovenica, 59, 233–241.

    CAS  Google Scholar 

  • Brecht, A., & Gauglitz, G. (1995) Optical probes and transducers. Biosensors and Bioelectronics, 10, 923–936. DOI: 10.1016/0956-5663(95)99230-i.

    Article  CAS  Google Scholar 

  • Bucaretchi, F., Prado, C. C., Branco, M. M., Soubhia, P., Metta, G. M., Mello, S. M., de Capitani, E. M., Lanaro, R., Hyslop, S., Costa, J. L., Fernandes, L. C. R., & Vieira, R. J. (2012) Poisoning by illegal rodenticides containing acetylcholinesterase inhibitors (chumbinho): a prospective case series. Clincial Toxicology, 50, 44–51. DOI: 10.3109/15563650.2011.639715.

    Article  CAS  Google Scholar 

  • Bueno, P. R., Watanabe, A. M., Faria, R. C., Santos, M. L., & Riccardi, C. S. (2010) Electrogravimetric real-time and in situ Michaelis-Menten enzymatic kinetics: progress curve of acetylcholinesterase hydrolysis. The Journal of Physical Chemistry B, 114, 16605–16610. DOI: 10.1021/jp106274m.

    Article  CAS  Google Scholar 

  • Bueno, P. R., Gonçalves, L. M., dos Santos, F. C., dos Santos, M. L., Barros, A. A., & Faria, R. C. (2013) Electrogravimetric analysis by quartz-crystal microbalance on the consumption of the neurotransmitter acetylcholine by acetylcholinesterase. Analytical Letters, 46, 258–265. DOI: 10.1080/00032719.2012.713065.

    Article  CAS  Google Scholar 

  • Cavalli, A., Bottegoni, G., Raco, C., De Vivo, M., & Recanatini, M. (2004) A computational study of the binding of propidium to the peripheral anionic site of human acetylcholinesterase. Journal of Medicinal Chemistry, 47, 3991–3999. DOI: 10.1021/jm040787u.

    Article  CAS  Google Scholar 

  • Caygill, R. L., Blair, G. E., & Millner, P. A. (2010) A review on viral biosensors to detect human pathogens. Analytica Chimica Acta, 681, 8–15. DOI: 10.1016/j.aca.2010.09.038.

    Article  CAS  Google Scholar 

  • Chauhan, N., Narang, J., & Pundir, C. S. (2011a) Immobilization of rat brain acetylcholinesterase on porous gold-nanoparticle-CaCO3 hybrid material modified Au electrode for detection of organophosphorous insecticides. International Journal of Biological Macromolecules, 49, 923–929. DOI: 10.1016/j.ijbiomac.2011.08.006.

    Article  CAS  Google Scholar 

  • Chauhan, N., Narang, J., Pundir, C. S. (2011b) Immobilization of rat brain acetylcholinesterase on ZnS and poly(indole-5-carboxylic acid) modified Au electrode for detection of organophosphorus insecticides. Biosensors and Bioelectronics, 29, 82–88. DOI: 10.1016/j.bios.2011.07.070.

    Article  CAS  Google Scholar 

  • Cheewakriengkrai, L., & Gauthier, S. (2013) A 10-year perspective on donepezil. Expert Opinion on Pharmacotherapy, 14, 331–338. DOI: 10.1517/14656566.2013.760543.

    Article  CAS  Google Scholar 

  • Cheki, M., Moslehi, M., & Assadi, M. (2013) Marvelous applications of quantum dots. European Review for Medical and Pharmacological Sciences, 17, 1141–1148.

    CAS  Google Scholar 

  • Cometa, M. F., Lorenzini, P., Fortuna, S., Volpe, M. T., Meneguz, A., & Palmery, M. (2005) In vitro inhibitory effect of aflatoxin B1 on acetylcholinesterase activity in mouse brain. Toxicology, 206, 125–135. DOI: 10.1016/j.tox.2004.07.009.

    Article  CAS  Google Scholar 

  • Cooper, M. A., & Singleton, V. T. (2007) A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. Journal of Molecular Recognition, 20, 154–184. DOI: 10.1002/jmr.826.

    Article  CAS  Google Scholar 

  • Cygler, M., Schrag, J. D., Sussman, J. L., Harel, M., Silman, I., Gentry, M. K., & Doctor, B. P. (1993) Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Science, 2, 366–382. DOI: 10.1002/pro.5560020309.

    Article  CAS  Google Scholar 

  • Darreh-Shori, T., & Soininen, H. (2010) Effects of cholinesterase inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with Alzheimer’s disease: A review of recent clinical studies. Current Alzheimer Research, 7, 67–73. DOI: 10.2174/156720510790274455.

    Article  CAS  Google Scholar 

  • da Silva, V. B., de Andrade, P., Kawano, D. F., Morais, P. A.B., de Almeida, J.R., Carvalho, I., Taft, C.A., & de Paula da Silva, C. H. T. (2011) In silico design and search for acetylcholinesterase inhibitors in Alzheimer’s disease with a suitable pharmacokinetic profile and low toxicity Future Medicinal Chemistry, 3, 947–960. DOI: 10.4155/fmc.11.67.

    Article  CAS  Google Scholar 

  • Davis, K.L., Thal, L.J., Gamzu, E.R., Davis, C.S., Woolson, R. F., Gracon, S. I., Drachman, D. A., Schneider, L.S., Whitehouse, P.J., Hoover, T.M., Morris, J.C., Kawas, C.H., Knopman, D.S., Earl, N.L., Kumar, V., & Doody, R. S. (1992) A double-blind, placebo-controlled multicenter study of tacrine for Alzheimer’s disease. The New England Journal of Medicine, 327, 1253–1259. DOI: 10.1056/nejm199210293271801.

    Article  CAS  Google Scholar 

  • Domínguez, C. M., Quintanilla, A., Ocón, P., Casas, J. A., & Rodriguez, J. J. (2013) The use of cyclic voltammetry to assess the activity of carbon materials for hydrogen peroxide decomposition. Carbon, 60, 76–83. DOI: 10.1016/j.carbon.2013.03.058.

    Article  CAS  Google Scholar 

  • Du, D., Huang, X. Cai, J., & Zhang, A. (2007) Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor. Biosensors and Bioelectronics, 23, 285–289. DOI: 10.1016/j.bios.2007.05.002.

    Article  CAS  Google Scholar 

  • Duysen, E. G., & Lockridge, O. (2011) Prolonged toxic effects after cocaine challenge in butyrylcholinesterase/plasma carboxylesterase double knockout mice: A model for butyrylcholinesterase-deficient humans. Drug Metabolism and Disposition, 39, 1321–1323. DOI: 10.1124/dmd.111.039917.

    Article  CAS  Google Scholar 

  • Dzyadevych, S. V., Arkhypova, V. N., Martelet, C., Jaffrezic-Renault, N., Chovelon, J. M., El’skaya, A. V., & Soldatkin, A. P. (2004a) Potentiometric biosensors based on ISFETs and immobilized cholinesterases. Electroanalysis, 16, 1873–1882. DOI: 10.1002/elan.200403075.

    Article  CAS  Google Scholar 

  • Dzyadevych, S. V., Arkhypova, V. N., Soldatkin, A. P., El’skaya, A. V., Martelet, C., & Jaffrezic-Renault, N. (2004b) Enzyme biosensor for tomatine detection in tomatoes. Analytical Letters, 37, 1611–1624. DOI: 10.1081/al-120037591.

    Article  CAS  Google Scholar 

  • Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Featherstone, R. M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.

    Article  CAS  Google Scholar 

  • Eyer, P., Worek, F., Kiderlen, D., Sinko, G., Stuglin, A., Simeon-Rudolf, V., & Reiner, E. (2003) Molar absorption coefficients for the reduced Ellman reagent: reassessment. Analytical Biochemistry, 312, 224–227. DOI: 10.1016/s0003-2697(02)00506-7.

    Article  CAS  Google Scholar 

  • Fania, L., Zampetti, A., Guerriero, G., & Feliciani, C. (2012) Alteration of cholinergic system in keratinocytes cells produces acantholysis: A possible use of cholinergic drugs in Pemphigus vulgaris. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 11, 238–242. DOI: 10.2174/1871523011202030238.

    Article  CAS  Google Scholar 

  • Fee, C. J. (2013a) Label-free, real-time interaction and adsorption analysis 1: Surface plasmon resonance. Methods in Molecular Biology, 996, 287–312. DOI: 10.1007/978-1-62703-354-1-17.

    Article  CAS  Google Scholar 

  • Fee, C. J. (2013b) Label-free, real-time interaction and adsorption analysis 2: Quartz crystal microbalance. Methods in Molecular Biology, 996, 313–322. DOI: 10.1007/978-1-62703-354-1-18.

    Article  CAS  Google Scholar 

  • Filip, J., Šefčovičová, J., Tomčík, P., Gemeiner, P., & Tkac, J. (2011) A hyaluronic acid dispersed carbon nanotube electrode used for a mediatorless NADH sensing and biosensing. Talanta, 84, 355–361. DOI: 10.1016/j.talanta.2011.01.004.

    Article  CAS  Google Scholar 

  • Flores, F., Artigas, J., Marty, J. L., & Valdés, F. (2003) Development of an EnFET for the detection of organophosphorous and carbamate insecticides. Analytical and Bioanalytical Chemistry, 376, 476–480. DOI: 10.1007/s00216-003-1925-y.

    Article  CAS  Google Scholar 

  • Gao, X., Tang, G., & Su, X. (2012) Optical detection of organophosphorus compounds based on Mn-doped ZnSe d-dot enzymatic catalytic sensor. Biosensors and Bioelectronics, 36, 75–80. DOI: 10.1016/j.bios.2012.03.042.

    Article  CAS  Google Scholar 

  • Ghatty Venkata Krishna, P. K., Chavali, N., & Uberbacher, E. C. (2013) Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase. Chemical Papers, 67, 677–681. DOI: 10.2478/s11696-013-0354-4.

    CAS  Google Scholar 

  • Gilson, M. K., Straatsma, T. P., McCammon, J. A., Ripoll, D. R., Faerman, C. H., Axelsen, P. H., Silman, I., & Sussman, J. L. (1994) Open “back door” in a molecular dynamics simulation of acetylcholinesterase. Science, 263, 1276–1278.

    Article  CAS  Google Scholar 

  • Gong, J., Guan, Z., & Song, D. (2013) Biosensor based on acetylcholinesterase immobilized onto layered double hydroxides for flow injection/amperometric detection of organophosphate pesticides. Biosensors and Bioelectronics, 39, 320–323. DOI: 10.1016/j.bios.2012.07.026.

    Article  CAS  Google Scholar 

  • Grando, S. A. (2006) Cholinergic control of epidermal cohesion. Experimental Dermatology, 15, 265–282. DOI: 10.1111/j.0906-6705.2006.00410.x.

    Article  CAS  Google Scholar 

  • Guerrieri, A., & Palmisano, F. (2001) An acetylcholinesterase/choline oxidase-based amperometric biosensors as a liquid chromatography detector for acetylcholine and choline determination in brain tissue homogenates. Analytical Chemistry, 73, 2875–2882. DOI: 10.1021/ac000852h.

    Article  CAS  Google Scholar 

  • Guo, X. (2012) Surface plasmon resonance based biosensor technique: A review. Journal of Biophotonics, 5, 483–501. DOI: 10.1002/jbio.201200015.

    Article  CAS  Google Scholar 

  • Hai, N.N., Chinh, V.D., Thuy, U.T.D., Chi, T.K., Yen, N.H., Cao, D. T., Liem, N. Q., & Nga, P. T. (2013) Detection of the pesticide by functionalised quantum dots as fluorescence-based biosensor. International Journal of Nanotechnology, 10, 137–145. DOI: 10.1504/ijnt.2013.053126.

    Article  Google Scholar 

  • Herzog, G., & Beni, V. (2013) Stripping voltammetry at microinterface arrays: A review. Analytica Chimica Acta, 769, 10–21. DOI: 10.1016/j.aca.2012.12.031.

    Article  CAS  Google Scholar 

  • Holtje, H. D., & Kier, L. B. (1975) Nature of anionic or α-site of cholinesterase. Journal of Pharmaceutical Sciences, 64, 418–420. DOI: 10.1002/jps.2600640313.

    Article  CAS  Google Scholar 

  • Homola, J. (2003) Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 377, 528–539. DOI: 10.1007/s00216-003-2101-0.

    Article  CAS  Google Scholar 

  • Hoskovcová, M., Dubina, P., Halámek, E., & Kobliha, Z. (2011) Identification of pairs of organophosphorus warfare agents through cholinesterase reaction. Analytical Letters, 44, 2521–2529. DOI: 10.1080/00032719.2011.551860.

    Article  CAS  Google Scholar 

  • Hou, S., Ou, Z., Chen, Q., & Wu, B. (2012) Amperometric acetylcholine biosensor based on self-assembly of gold nanoparticles and acetylcholinesterase on the sol-gel/multi-walled carbon nanotubes/choline oxidase composite-modified platinum electrode. Biosensors and Bioelectronics, 33, 44–49. DOI: 10.1016/j.bios.2011.12.014.

    Article  CAS  Google Scholar 

  • Huang, X., Tu, H., Zhu, D., Du, D., & Zhang, A. (2009) A gold nanoparticle labeling strategy for the sensitive kinetic assay of the carbamate-acetylcholinesterase interaction by surface plasmon resonance. Talanta, 78, 1036–1042. DOI: 10.1016/j.talanta.2009.01.018.

    Article  CAS  Google Scholar 

  • Ishige, Y., Takeda, S., & Kamahori, M. (2010) Direct detection of enzyme-catalyzed products by FET sensor with ferrocene-modified electrode. Biosensors and Bioelectronics, 26, 1366–1372. DOI: 10.1016/j.bios.2010.07.053.

    Article  CAS  Google Scholar 

  • Jogani, V. V., Shah, P. J., Misra, A. R., Mishra, P., & Mishra, A. K. (2007) Nose-to-brain delivery of tacrine. Journal of Pharmacy and Pharmacology, 59, 1199–1205. DOI: 10.1211/jpp.59.9.0003.

    Article  CAS  Google Scholar 

  • Johnson, G., & Moore, S. W. (2006) The peripheral anionic site of acetylcholinesterase: Structure, functions and potential role in rational drug design. Current Pharmaceutical Design, 12, 217–225. DOI: 10.2174/138161206775193127.

    Article  CAS  Google Scholar 

  • Kairdolf, B. A., Smith, A. M., Stokes, T. H., Wang, M. D., Young, A. N., & Nie, S. (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annual Review of Analytical Chemistry, 6, 143–162. DOI: 10.1146/annurev-anchem-060908-155136.

    Article  CAS  Google Scholar 

  • Khaled, E., Hassan, H. N. A., Mohamed, G. G., Ragab, F. A., & Seleim, A. E. A. (2010) Disposable potentiometric sensors for monitoring cholinesterase activity. Talanta, 83, 357–363. DOI: 10.1016/j.talanta.2010.09.020.

    Article  CAS  Google Scholar 

  • Khan, I., Samad, A., Khan, A. Z., Habtemariam, S., Badshah, A., Abdullah, S. M., Ullah, N., Khan, A., & Zia-Ul-Haq, M. (2013) Molecular interactions of 4-acetoxy-plakinamine B with peripheral anionic and other catalytic subsites of the aromatic gorge of acetylcholinesterase: Computational and structural insights. Pharmaceutical Biology, 51, 722–727. DOI: 10.3109/13880209.2013.764329.

    Article  CAS  Google Scholar 

  • Knapp, M. J., Gracon, S. I., Davis, C. S., Solomon, P. R., Pendlebury, W. W., & Knopman, D. S. (1994) Efficacy and safety of high-dose tacrine: A 30-week evaluation. Alzheimer Disease and Associated Disorders, 8, S22–S31. DOI: 10.1097/00002093-199424000-00003.

    Article  Google Scholar 

  • Lane, J. E., Shivers, J. P., & Zisser, H. (2013) Continuous glucose monitors: Current status and future developments. Current Opinion in Endocrinology Diabetes and Obesity, 20, 106–111. DOI: 10.1097/med.0b013e32835edb9d.

    Article  CAS  Google Scholar 

  • Liao, J., Nørgaard-Pedersen, B., & Brodbeck, U. (1993) Subunit association and glycosylation of acetylcholinesterase from monkey brain. Journal of Neurochemistry, 61, 1127–1134. DOI: 10.1111/j.1471-4159.1993.tb03629.x.

    Article  CAS  Google Scholar 

  • Lilienfeld, S. (2002) Galantamine—a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Reviews, 8, 159–176. DOI: 10.1111/j.1527-3458.2002.tb00221.x.

    Article  CAS  Google Scholar 

  • Litescu, S. C., Eremia, S., & Radu, G. L. (2010) Biosensors for the determination of phenolic metabolites. Advances in Experimental Medicine and Biology, 698, 234–240. DOI: 10.1007/978-1-4419-7347-4_17.

    Article  CAS  Google Scholar 

  • Liu, J., Zhang, H. Y., Tang, X. C, Wang, B., He, X. C, & Bai, D. L. (1998) Effects of synthetic (−)-huperzine A on cholinesterase activities and mouse water maze performance. Acta Pharmacologica Sinica, 19, 413–416.

    CAS  Google Scholar 

  • Lockridge, O., Bartels, C. F., Vaughan, T. A., Wogn, C. K., Norton, S. E., & Johnson, L. L. (1987) Complete amino acid sequence of human serum cholinesterase. The Journal of Biological Chemistry, 262, 549–557.

    CAS  Google Scholar 

  • Luo, W., Li, Y.P., He, Y., Huang, S.L., Li, D., Gu, L.Q., & Huang, Z. S. (2011) Synthesis and evaluation of heterobivalent tacrine derivatives as potential multi-functional anti-Alzheimer agents. European Journal of Medicinal Chemistry, 46, 2609–2616. DOI: 10.1016/j.ejmech.2011.03.058.

    Article  CAS  Google Scholar 

  • Marrs, T. C. (1993) Organophosphate poisoning. Pharmacology & Therapeutics, 58, 51–66. DOI: 10.1016/0163-7258(93)90066-m.

    Article  CAS  Google Scholar 

  • Masson, P., Froment, M. T., Gillon, E., Nachon, F., Darvesh, S., & Schopfer, L. M. (2007) Kinetic analysis of butyrylcholinesterase-catalyzed hydrolysis of acetanilides. Biochimica Biophysica Acta (BBA) — Proteins and Proteomics, 1774, 1139–1147. DOI: 10.1016/j.bbapap.2007.06.004.

    Article  CAS  Google Scholar 

  • Massoulié, J., Anselmet, A., Bon, S., Krejci, E., Legay, C., Morel, N., & Simon, S. (1999) The polymorphism of acetylcholinesterase: post-translational processing, quaternary associations and localization. Chemico-Biological Interactions, 119–120, 29–42. DOI: 10.1016/s0009-2797(99)00011-3.

    Article  Google Scholar 

  • Mazzanti, C. M., Spanevello, R. M., Obregon, A., Pereira, L. B., Streher, C.A., Ahmed, M., Mazzanti, A., Graca, D. L., Morsch, V. M., & Schetinger, M. R. C. (2006) Ethidium bromide inhibits rat brain acetylcholinesterase activity in vitro. Chemico-Biological Interactions, 162, 121–127. DOI: 10.1016/j.cbi.2006.05.013.

    Article  CAS  Google Scholar 

  • Meng, X., Wei, J., Ren, X., Ren, J., & Tang, F. (2013) A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosensors and Bioelectronics, 47, 402–407. DOI: 10.1016/j.bios.2013.03.053.

    Article  CAS  Google Scholar 

  • Milkani, E., Lambert, C. R., & McGimpsey, W. G. (2011) Direct detection of acetylcholinesterase inhibitor binding with an enzyme-based surface plasmon resonance sensor. Analytical Biochemistry, 408, 212–219. DOI: 10.1016/j.ab.2010.09.009.

    Article  CAS  Google Scholar 

  • Mitchell, J. (2010) Small molecule immunosensing using surface plasmon resonance. Sensors, 10, 7323–7346. DOI: 10.3390/s100807323.

    Article  CAS  Google Scholar 

  • Montenegro, M. F., Moral-Naranjo, M. T., Páez de la Cadena, M., Campoy, F. J., Muñoz-Delgado, E., & Vidal, C. J. (2008a) Human butyrylcholinesterase components differ in aryl acylamidase activity. Biological Chemistry, 389, 425–432. DOI: 10.1515/bc.2008.041.

    Article  CAS  Google Scholar 

  • Montenegro, M. F., Moral-Naranjo, M. T., Páez de la Cadena, M., Campoy, F. J., Muñoz-Delgado, E., & Vidal, C. J. (2008b) The level of aryl acylamidase activity displayed by human butyrylcholinesterase depends on its molecular distribution. Chemico-Biological Interactions, 175, 336–339. DOI: 10.1016/j.cbi.2008.03.007.

    Article  CAS  Google Scholar 

  • Montenegro, M. F., Moral-Naranjo, M. T., Muñoz-Delgado, E., Campoy, F. J., & Vidal, C. J. (2009) Hydrolysis of acetylthiocoline, o-nitroacetanilide and o-nitrotrifluoroacetanilide by fetal bovine serum acetylcholinesterase. FEBS Journal, 276, 2074–2083. DOI: 10.1111/j.1742-4658.2009.06942.x.

    Article  CAS  Google Scholar 

  • Nawaz, S. A., Ayaz, M., Brandt, W., Wessjohann, L. A., & Westermann, B. (2011) Cation-π and π-π stacking interactions allow selective inhibition of butyrylcholinesterase by modified quinine and cinchonidine alkaloids. Biochemical and Biophysical Research Communications, 404, 935–940. DOI: 10.1016/j.bbrc.2010.12.084.

    Article  CAS  Google Scholar 

  • Ngeh-Ngwainbi, J., Suleiman, A. A., & Guilbault, G. G. (1990) Piezoelectric crystal biosensors. Biosensors and Bioelectronics, 5, 13–26. DOI: 10.1016/0956-5663(90)80023-7.

    Article  CAS  Google Scholar 

  • Nichols, S. P., Koh, A., Storm, W. L., Shin, J. H., & Schoenfisch, M. H. (2013) Biocompatible materials for continuous glucose monitoring devices. Chemical Reviews, 113, 2528–2549. DOI: 10.1021/cr300387j.

    Article  CAS  Google Scholar 

  • No, H. Y., Kim, Y. A., Lee, Y. T., & Lee, H. S. (2007) Cholinesterase-based dipstick assay for the detection of organophosphate and carbamate pesticides. Analytica Chimica Acta, 594, 37–43. DOI: 10.1016/j.aca.2007.05.008.

    Article  CAS  Google Scholar 

  • Okazaki, S., Nakagawa, H., Asakura, S., Fukuda, K., Kiuchi, H., Takahashi, S., & Shigemori, T. (1998) A re-usable biosensor for organophosphate pesticides. Denki Kagaku, 66, 615–619.

    CAS  Google Scholar 

  • Ovalle, M., Stoytcheva, M., Zlatev, R., & Valdez, B. (2009) Electrochemical study of rat brain acetylcholinesterase inhibition by chlorofos: Kinetic aspects and analytical applications. Electrochimica Acta, 55, 516–520. DOI: 10.1016/j.electacta.2009.09.008.

    Article  CAS  Google Scholar 

  • Periasamy, A. P., Umasankar, Y., & Chen, S. M. (2009) Nanomaterials — acetylcholinesterase enzyme matrices for organophosphorus pesticides electrochemical sensors: a review. Sensors, 9, 4034–4055. DOI: 10.3390/s90604034.

    Article  CAS  Google Scholar 

  • Pohanka, M. (2009) Monoclonal and polyclonal antibodies production — preparation of potent biorecognition element. Journal of Applied Biomedicine, 7, 115–121.

    CAS  Google Scholar 

  • Pohanka, M. (2011a) Cholinesterases, a target of pharmacology and toxicology. Biomedical Papers, 155, 219–229. DOI: 10.5507/bp.2011.036.

    Article  CAS  Google Scholar 

  • Pohanka, M. (2011b) Alzheimer’s disease and related neurode-generative disorders: implication and counteracting of melatonin. Journal of Applied Biomedicine, 9, 185–196. DOI: 10.2478/v10136-011-0003-6.

    Article  CAS  Google Scholar 

  • Pohanka, M. (2012a) Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. International Journal of Molecular Sciences, 13, 2219–2238. DOI: 10.3390/ijms13022219.

    Article  CAS  Google Scholar 

  • Pohanka, M. (2012b) Acetylcholinesterase inhibitors: a patent review (2008-present). Expert Opinion on Therapeutic Patents, 22, 871–886. DOI: 10.1517/13543776.2012.701620.

    Article  CAS  Google Scholar 

  • Pohanka, M. (2012c) Acetylcholinesterase based dipsticks with indoxyl acetate as a substrate for assay of organophosphates and carbamates. Analytical Letters, 45, 367–374. DOI: 10.1080/00032719.2011.644743.

    Article  CAS  Google Scholar 

  • Pohanka, M. (2012d) Antioxidants countermeasures against sulfur mustard. Mini-Reviews in Medicinal Chemistry, 12, 742–748. DOI: 10.2174/138955712801264783.

    Article  CAS  Google Scholar 

  • Pohanka, M. (2013a) Cholinesterases in biorecognition and biosensors construction: A review. Analytical Letters, 46, 1849–1868. DOI: 10.1080/00032719.2013.780240.

    Article  CAS  Google Scholar 

  • Pohanka, M. (2013b) Spectrophotomeric assay of aflatoxin B1 using acetylcholinesterase immobilized on standard microplates. Analytical Letters, 46, 1306–1315. DOI: 10.1080/00032719.2012.757703.

    Article  CAS  Google Scholar 

  • Pohanka, M. (2014) Voltammetric assay of butyrylcholinesterase in plasma samples and its comparison to the standard spectrophotometric test. Talanta, 119, 412–416. DOI: 10.1016/j.talanta.2013.11.045.

    Article  CAS  Google Scholar 

  • Raghu, P., Kumara Swamy, B. E., Madhusudana Reddy, T., Chandrashekar, B. N., & Reddaiah, K. (2012) Sol-gel immobilized biosensor for the detection of organophosphorous pesticides: A voltammetric method. Bioelectrochemistry, 83, 19–24. DOI: 10.1016/j.bioelechem.2011.08.002.

    Article  CAS  Google Scholar 

  • Raghu, P., Madhusudana Reddy, T., Reddaiah, K., Kumara Swamy, B. E., & Sreedhar, M. (2014) Acetylcholinesterase based biosensor for monitoring of malathion and acephate in food samples: A voltammetric study. Food Chemistry, 142, 188–196. DOI: 10.1016/j.foodchem.2013.07.047.

    Article  CAS  Google Scholar 

  • Rai, D. K., & Sharma, B. (2007) Carbofuran-induced oxidative stress in mammalian brain. Molecular Biotechnology, 37, 66–71. DOI: 10.1007/s12033-007-0046-9.

    Article  CAS  Google Scholar 

  • Rainer, M. (1997) Galanthamine in Alzheimer’s disease: A new alternative to tacrine? CNS Drugs, 7, 89–97. DOI: 10.2165/00023210-199707020-00001.

    Article  CAS  Google Scholar 

  • Rajan, Chand, S., & Gupta, B. D. (2007) Surface plasmon resonance based fiber-optic sensor for the detection of pesticide. Sensors and Actuators B: Chemical, 123, 661–666. DOI: 10.1016/j.snb.2006.10.001.

    Article  CAS  Google Scholar 

  • Rampa, A., Belluti, F., Gobbi, S., & Bisi, A. (2011) Hybrid-based multi-target ligands for the treatment of Alzheimer’s disease. Current Topics in Medicinal Chemimstry, 11, 2716–2730. DOI: 10.2174/156802611798184409.

    Article  CAS  Google Scholar 

  • Rand, J. B. (2007, January 30). Acetylcholine. In the C. elegans research community (Ed.), WormBook. Retrieved from http://www.wormbook.org. DOI: 10.1895/wormbook.1.131.1.

  • Ricci, F., Volpe, G., Micheli, L., & Palleschi, G. (2007) A review on novel developments and applications of immunosensors in food analysis. Analytica Chimica Acta, 605, 111–129. DOI: 10.1016/j.aca.2007.10.046.

    Article  CAS  Google Scholar 

  • Saxena, A., Redman, A. M. G., Jiang, X., Lockridge, O., & Doctor, B. P. (1997) Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Biochemistry, 36, 14642–14651. DOI: 10.1021/bi971425+.

    Article  CAS  Google Scholar 

  • Šefčovičová, J., Filip, J., Mastihuba, V., Gemeiner, P., & Tkac, J. (2012) Analysis of ethanol in fermentation samples by a robust nanocomposite-based microbial biosensor. Biotechnology Letters, 34, 1033–1039. DOI: 10.1007/s10529-012-0875-x.

    Article  CAS  Google Scholar 

  • Shafferman, A., Kronman, C., Flashner, Y., Leitner, M., Grosfeld, H., Ordentlich, A., Gozes, Y., Cohen, S., Ariel, N., Barak, D., Harel, M., Silman, I., Sussman, J. L., & Velan, B. (1992) Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. The Journal of Biological Chemistry, 267, 17640–17648.

    CAS  Google Scholar 

  • Silman, I., & Sussman, J. L. (2008) Acetylcholinesterase: How is structure related to function? Chemico-Biological Interactions, 175, 3–10. DOI: 10.1016/j.cbi.2008.05.035.

    Article  CAS  Google Scholar 

  • Šípová, H., & Homola, J. (2013) Surface plasmon resonance sensing of nucleic acids: A review. Analytica Chimica Acta, 773, 9–23. DOI: 10.1016/j.aca.2012.12.040.

    Article  CAS  Google Scholar 

  • Squellerio, I., Caruso, D., Porro, B., Veglia, F., Tremoli, E., & Cavalca, V. (2012) Direct glutathione quantification in human blood by LC-MS/MS: comparison with HPLC with electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis, 71, 111–118. DOI: 10.1016/j.jpba.2012.08.013.

    Article  CAS  Google Scholar 

  • Srinivasan, T. G., & Vasudeva Rao, P. R. (2014) Free acidity measurement — A review. Talanta, 118, 162–171. DOI: 10.1016/j.talanta.2013.10.017.

    Article  CAS  Google Scholar 

  • Stoytcheva, M., Zlatev, R., Valdez, B., Magnin, J. P., & Velkova, Z. (2006) Electrochemical sensor based on Arthrobacter globiformis for cholinesterase activity determination. Biosensors and Bioelectronics, 22, 1–9. DOI: 10.1016/j.bios.2005.11.013.

    Article  CAS  Google Scholar 

  • Stoytcheva, M., Zlatev, R., Velkova, Z., Valdez, B., Ovalle, M., & Petkov, L. (2009) Hybrid electrochemical biosensor for organophosphorus pesticides quantification. Electrochimica Acta, 54, 1721–1727. DOI: 10.1016/j.electacta.2008.09.063.

    Article  CAS  Google Scholar 

  • Tayeb, H. O., Yang, H. D., Price, B. H., & Tarazi, F. I. (2012) Pharmacotherapies for Alzheimer’s disease: Beyond cholinesterase inhibitors. Pharmacology & Therapeutics, 134, 8–25. DOI: 10.1016/j.pharmthera.2011.12.002.

    Article  CAS  Google Scholar 

  • Thomsen, T., & Kewitz, H. (1990) Selective inhibition of human acetylcholinesterase by galanthamine in vitro and in vivo. Life Sciences, 46, 1553–1558. DOI: 10.1016/0024-3205(90)90429-u.

    Article  CAS  Google Scholar 

  • Tipple, T. E., & Rogers, L. K. (2012) Methods for the determination of plasma or tissue glutathione levels. Methods in Molecular Biology, 889, 315–324. DOI: 10.1007/978-1-61779-867-2_20.

    Article  CAS  Google Scholar 

  • Turner, A. P. F. (2013) Biosensors: sense and sensibility. Chemical Society Reviews, 42, 3184–3196. DOI: 10.1039/c3cs35528d.

    Article  CAS  Google Scholar 

  • Venkatasubban, K. S., Johnson, J. L., Thomas, J. L., Fauq, A., Cusack, B., & Rosenberry, T. L. (2005) Steric effects in the decarbamoylation of carbamoylated acetylcholinesterases. Chemico-Biological Interactions, 157–158, 433–434. DOI: 10.1016/j.cbi.2005.10.094.

    Article  CAS  Google Scholar 

  • Villatte, F., Bachman, T. T., Hussein, A. S., & Schmid, R. D. (2001) Acetylcholinesterase assay for rapid expression screening in liquid and solid media. BioTechniques, 30, 81–86.

    CAS  Google Scholar 

  • Wang, C. L., Wei, L. Y., Yuan, C. J., & Hwang, K. C. (2012) Reusable amperometric biosensor for measuring protein tyrosine kinase activity. Analytical Chemistry, 84, 971–977. DOI: 10.1021/ac202369d.

    Article  CAS  Google Scholar 

  • Wong, D.M., Greenblatt, H.M., Dvir, H., Carlier, P.R., Han, Y. F., Pang, Y. P., Silman, I., & Sussman, J. L. (2003) Acetylcholinesterase complexed with bivalent ligands related to huperzine A: Experimental evidence for species-dependent protein-ligand complementarity. Journal of the American Chemical Society, 125, 363–373. DOI: 10.1021/ja021111w.

    Article  CAS  Google Scholar 

  • Xin, Q., & Wightman, R. M. (1997) Transport of choline in rat brain slices. Brain Research, 776, 126–132. DOI: 10.1016/s0006-8993(97)00996-7.

    Article  CAS  Google Scholar 

  • Yang, H. (2012) Enzyme-based ultrasensitive electrochemical biosensors. Current Opinion in Chemical Biology, 16, 422–428. DOI: 10.1016/j.cbpa.2012.03.015.

    Article  CAS  Google Scholar 

  • Yang, Z. Z., Zhang, Y. Q., Wu, K., Wang, Z. Z., & Qi, X. R. (2012) Tissue distribution and pharmacodynamics of rivastigmine after intranasal and intravenous administration in rats. Current Alzheimer Research, 9, 315–325. DOI: 10.2174/156720512800107528.

    Article  CAS  Google Scholar 

  • Yang, Y., Fu, R., Wang, H., & Wang, C. (2013a) Carbon nanofibers decorated with platinum nanoparticles: a novel three-dimensional platform for non-enzymatic sensing of hydrogen peroxide. Microchimica Acta, 180, 1249–1255. DOI: 10.1007/s00604-013-1041-4.

    Article  CAS  Google Scholar 

  • Yang, L., Wang, G., Liu, Y., & Wang, M. (2013b) Development of a biosensor based on immobilization of acetylcholinesterase on NiO nanoparticles-carboxylic graphene-nafion modified electrode for detection of pesticides. Talanta, 113, 135–141. DOI: 10.1016/j.talanta.2013.03.025.

    Article  CAS  Google Scholar 

  • Yen, T., Nightingale, B. N., Burns, J. C., Sullivan, D. R., & Stewart, P. M. (2003) Butyrylcholinesterase (BCHE) genotyping for post-succinylcholine apnea in an Australian population. Clinical Chemistry, 49, 1297–1308. DOI: 10.1373/49.8.1297.

    Article  CAS  Google Scholar 

  • Yotova, L., & Medhat, N. (2012) Coimmobilization of acetylcholinesterase and choline oxidase on new nanohybrid membranes obtained by sol gel technology. Biotechnology & Biotechnological Equipment, 26, 3039–3043. DOI: 10.5504/bbeq.2012.0020.

    Article  CAS  Google Scholar 

  • Yu, Q. S., Holloway, H. W., Luo, W., Lahiri, D. K., Brossi, A., & Greig, N. H. (2010) Long-acting anticholinesterases for myasthenia gravis: synthesis and activities of quaternary phenylcarbamates of neostigmine, pyridostigmine and physostigmine. Bioorganic & Medicinal Chemistry, 18, 4687–4693. DOI: 10.1016/j.bmc.2010.05.022.

    Article  CAS  Google Scholar 

  • Zhang, J., Luo, A., Liu, P., Wei, S., Wang, G., & Wei, S. (2009) Detection of organophosphorus pesticides using potentiometric enzymatic membrane biosensor based on methylcellulose immobilization. Analytical Sciences, 25, 511–515. DOI: 10.2116/analsci.25.511.

    Article  CAS  Google Scholar 

  • Zheng, Z., Zhou, Y., Li, X., Liu, S., & Tang, Z. (2011) Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosensors and Bioelectronics, 26, 3081–3085. DOI: 10.1016/j.bios.2010.12.021.

    Article  CAS  Google Scholar 

  • Zhou, Q., Yang, L., Wang, G., & Yang, Y. (2013) Acetylcholinesterase biosensor based on SnO2 nanoparticles-carboxylic graphene-nafion modified electrode for detection of pesticides. Biosensors and Bioelectronics, 49, 25–31. DOI: 10.1016/j.bios.2013.04.037.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Pohanka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pohanka, M. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chem. Pap. 69, 4–16 (2015). https://doi.org/10.2478/s11696-014-0542-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0542-x

Keywords

Navigation