Skip to main content

Advertisement

Log in

Valorisation of bio-oil resulting from fast pyrolysis of wood

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Bio-oil resulting from the pyrolysis of lignocellulose is a complex mixture of polar low molecular mass oxygenated compounds of various functionalities and non-polar high molecular mass lignin derivatives. Several approaches to the upgrading of bio-oil are currently in progress. This study investigates the valorisation of crude bio-oil using physical and chemical methods. The effects of methanol addition on some properties of the bio-oil are investigated. Stable bio-oil/diesel oil emulsions are produced by the addition of surfactants with a hydrophilic-lipophilic balance value of 5–6. An alternative approach towards the upgrading of bio-oil is the hydrotreatment of the water-soluble fraction of bio-oil. Two-stage hydroprocessing with noble-metal catalysts Ru/C and Pt/C increases the intrinsic hydrogen content of the water-soluble fraction. The results show that the thermally unstable components including sugars, ketones and aldehydes are readily converted to diols and alcohols at pressures of 5 MPa. These observations can be explained by a set of reaction pathways for the compounds identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adjaye, J. D., & Bakhshi, N. N. (1995a). Catalytic conversion of a biomass-derived oil to fuels and chemicals I: Model compound studies and reaction pathways. Biomass and Bioenergy, 8, 131–149. DOI: 10.1016/0961-9534(95)00018-3.

    Article  CAS  Google Scholar 

  • Adjaye, J. D., & Bakhshi, N. N. (1995b). Catalytic conversion of a biomass-derived oil to fuels and chemicals II: Chemical kinetics, parameter estimation and model predictions. Biomass and Bioenergy, 8, 265–277. DOI: 10.1016/0961-9534(95)00019-4.

    Article  CAS  Google Scholar 

  • American Society for Testing and Materials (2008). Standard test method for water using Karl Fischer titration. E203-08. West Conshocken, PA, USA. DOI: 10.1520/e0203-08.

    Google Scholar 

  • American Society for Testing and Materials (2012). Standard test method for kinematic viscosity of transparent and opaque liquids. D445-12. West Conshocken, PA, USA. DOI: 10.1520/d0445-12.

    Google Scholar 

  • Bridgwater, A., Czernik, S., Diebold, J., Meier, D., Oasmaa, A., Peacocke, C., Piskorz, J., & Radlein, D. (1999). Fast pyrolysis of biomass: a handbook. Thatcham, UK: CPL Press.

    Google Scholar 

  • Bridgwater, A. V., & Peacocke, G. V. C. (2000). Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews, 4, 1–73. DOI: 10.1016/s1364-0321(99)00007-6.

    Article  CAS  Google Scholar 

  • Chiaramonti, D., Bonini, M., Fratini, E., Tondi, G., Gartner, K., Bridgwater, A. V., Grimm, H. P., Soldaini, I., Webster, A., & Baglioni, P. (2003). Development of emulsions from biomass pyrolysis liquids and diesel and their use in engines-Part 1: emulsion production. Biomass and Bioenergy, 25, 85–99. DOI: 10.1016/s0961-9534(02)00183-6.

    Article  CAS  Google Scholar 

  • Czernik, S., Johnson, D. K., & Black, S. (1994). Stability of wood fast pyrolysis oil. Biomass and Bioenergy, 7, 187–192. DOI: 10.1016/0961-9534(94)00058-2.

    Article  CAS  Google Scholar 

  • Davda, R. R., Shabaker, J. W., Huber, G. W., Cortright, R. D., & Dumesic, J. A. (2003). Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts. Applied Catalysis B: Environmental, 43, 13–26. DOI: 10.1016/s0926-3373(02)00277-1.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2004). Current technologies for thermo-conversion of biomass into fuels and chemicals. Energy Sources, 26, 715–730. DOI: 10.1080/00908310490445562.

    Article  CAS  Google Scholar 

  • Diebold, J. P., & Czernik, S. (1997). Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energy & Fuels, 11, 1081–1091. DOI: 10.1021/ef9700339.

    Article  CAS  Google Scholar 

  • Elliot, D. C. (2007). Historical developments in hydroprocessing bio-oils. Energy & Fuels, 21, 1792–1815. DOI: 10.1021/ef070044u.

    Article  Google Scholar 

  • Elliot, D. C., Hart, T. R., Neuenschwander, G. G., Rotness, L. J., & Zacher, A. H. (2009). Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products. Environmental Progress & Sustainable Energy, 28, 441–449. DOI: 10.1002/ep.10384.

    Article  Google Scholar 

  • Furimsky, E. (2013). Hydroprocessing challenges in biofuel production. Catalysis Today, 217, 13–56. DOI: 10.1016/j.cattod.2012.11.008.

    Article  CAS  Google Scholar 

  • Huber, G. W., Cortright, R. D., & Dumesic, J. A. (2004). Renewable alkanes by aqueous-phase reforming of biomassderived oxygenates. Angewandte Chemie International Edition, 43, 1549–1551. DOI: 10.1002/anie.200353050.

    Article  CAS  Google Scholar 

  • Ikura, M., Mirmiran, S., Sawatzky, H., & Stanciulescu, M. (1998). U.S. Patent No. 5820640 A. Washington, D.C., USA: U.S. Patent and Trademark Office.

  • Oasmaa, A., & Kuoppala, E. (2003). Fast pyrolysis of forestry residue. 3. Storage stability of liquid fuel. Energy & Fuels, 17, 1075–1084. DOI: 10.1021/ef030011o.

    Article  CAS  Google Scholar 

  • Oasmaa, A., & Peacocke, C. (2010). Properties and fuel use of biomass-derived fast pyrolysis liquids. Vuorimiehentie, Finland: VTT.

    Google Scholar 

  • Oasmaa, A., Kuoppala, E., Ardiyanti, A., Venderbosch, R. H., & Heeres, H. J. (2010). Characterization of hydrotreated fast pyrolysis liquids. Energy & Fuels, 24, 5264–5272. DOI: 10.1021/ef100573q.

    Article  CAS  Google Scholar 

  • Lu, Q., Yang, X. L., & Zhu, X. F. (2008). Analysis on chemical and physical properties of bio-oil pyrolized from rice husk. Journal of Analytical and Applied Pyrolysis, 82, 191–198. DOI: 10.1016/j.jaap.2008.03.003.

    Article  CAS  Google Scholar 

  • Venderbosch, R. H., & Prins, W. (2010). Fast pyrolysis technology development. Biofuels, Bioproducts and Biorefining, 4, 178–208. DOI: 10.1002/bbb.205.

    Article  CAS  Google Scholar 

  • Vispute, T. P., Zhang, H. Y., Sanna, A., Xiao, R., & Huber, G. W. (2010). Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science, 330, 1222–1227. DOI: 10.1126/science.1194218.

    Article  CAS  Google Scholar 

  • Wildschut, J., Arentz, J., Rasrendra, C. B., Venderbosch, R. H., & Heeres, H. J. (2009). Catalytic hydrotreatment of fast pyrolysis oil: Model studies on reaction pathways for the carbohydrate fraction. Environmental Progress & Sustainable Energy, 28, 450–460. DOI: 10.1002/ep.10390.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul F. L. P. Vanderauwera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanderauwera, P.F.L.P., Wambeke, D.M.C. Valorisation of bio-oil resulting from fast pyrolysis of wood. Chem. Pap. 68, 1205–1212 (2014). https://doi.org/10.2478/s11696-014-0541-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0541-y

Keywords

Navigation