Skip to main content
Log in

Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Fe- and Cu-oxides supported on γ-alumina (γ-Al2O3; metal loading of 3 mass %) were investigated as alternative catalysts to the conventional Ag-based system in the selective catalytic reduction of NO with ethanol (EtOH-SCR). The catalysts were characterized by elemental analysis, N2 sorption, X-ray diffraction, temperature-prgrammed desorption of NH3, temperature-programmed reduction with H2, diffuse reflectance UV-VIS (DR-UV-VIS) spectroscopy, and compared with 3 mass % Ag/γ-Al2O3 as a reference catalyst. Catalytic experiments were carried out between 423 K and 773 K in the steady state and by temperature-programmed surface reaction (TPSR) experiments. For all catalysts, the highest NO conversion (900 ppm (ppm = parts of the mixture component per million parts of all mixture components) NO, 900 ppm EtOH, 0.5 vol. % H2O, 4 vol. % O2 in He) was found at 573 K. While 84 % of NO were converted over the Ag-based catalysts, only 20–60 % NO conversion was observed for the Fe- and Cu-containing catalysts. Total oxidation of ethanol as an unwanted side reaction occurs over 3 mass % Cu on γ-Al2O3 already at 573 K, whereas the highest activity of 3 mass % Fe on γ-Al2O3 for this conversion was reached at 743 K. For lower temperatures, partial oxidation of ethanol leads to organic by-products which can act as active intermediates in EtOH-SCR. TPSR experiments show that ethanol reacts over both the Fe- and the Cu-based catalysts to organic by-products, such as ethene or acetaldehyde, which affect the EtOH-SCR reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Águila, G., Gracia, F., Cortés, J., & Araya, P. (2008). Effect of copper species and the presence of reaction products on the activity of methane oxidation on supported CuO catalysts. Applied Catalysis B: Environmental, 77, 325–338. DOI: 10.1016/j.apcatb.2007.08.002.

    Article  Google Scholar 

  • Arena, F., Gatti, G., Stievano, L., Martra, G., Coluccia, S., Frusteri, F., Spadaro, L., & Parmaliana, A. (2006). Activity pattern of low-loaded FeOx/SiO2 catalysts in the selective oxidation of C1 and C3 alkanes with oxygen. Catalysis Today, 117, 75–79. DOI: 10.1016/j.cattod.2006.05.047.

    Article  CAS  Google Scholar 

  • Baik, J. H., Yim, S. D., Nam, I. S., Mok, Y. S., Lee, J. H., Cho, B. K., & Oh, S. H. (2004). Control of NOx emissions from diesel engine by selective catalytic reduction (SCR) with urea. Topics in Catalysis, 30–31, 37–41. DOI: 10.1023/b:toca.0000029725.88068.97.

    Article  Google Scholar 

  • Barth, R., Falcone, J. S., Jr., Vorce, S., McLennan, J., Outland, B., & Arnoth, E. (2002). Cobalt-silica interaction and the dehydrogenation of 2-propanol. Catalysis Communications, 3, 135–139. DOI: 10.1016/s1566-7367(02)00070-5.

    Article  CAS  Google Scholar 

  • Bion, N., Saussey, J., Haneda, M., & Daturi, M. (2003). Study by in situ FTIR spectroscopy of the SCR of NOx, by ethanol on Ag/Al2O3-Evidence of the role of isocyanate species. Journal of Catalysis, 217, 47–58. DOI: 10.1016/s0021-9517(03)00035-6.

    CAS  Google Scholar 

  • Bogdanchikova, N., Meunier, F. C., Avalos-Borja, M., Breen, J. P., & Pestryakov, A. (2002). On the nature of the silver phases of Ag/Al2O3 catalysts for reactions involving nitric oxide. Applied Catalysis B: Environmental, 36, 287–297. DOI: 10.1016/s0926-3373(01)00286-7.

    Article  CAS  Google Scholar 

  • Bordiga, S., Buzzoni, R., Geobaldo, F., Lamberti, C., Giamello, E., Zecchina, A., Leofanti, G., Petrini, G., Tozzola, G., & Vlaic, G. (1996). Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. Journal of Catalysis, 158, 486–501. DOI: 10.1006/jcat.1996.0048.

    Article  CAS  Google Scholar 

  • Boutros, M., Trichard, J. M., & Da Costa, P. (2009). Silver supported mesoporous SBA-15 as potential catalysts for SCR NOx by ethanol. Applied Catalysis B: Environmental, 91, 640–648. DOI: 10.1016/j.apcatb.2009.07.004.

    Article  CAS  Google Scholar 

  • Brandenberger, S., Kröcher, O., Tissler, A., & Althoff, R. (2010). The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3. Applied Catalysis B: Environmental, 95, 348–357. DOI: 10.1016/j.apcatb.2010.01.013.

    Article  CAS  Google Scholar 

  • Chary, K. V. R., Seela, K. K., Naresh, D., & Ramakanth, P. (2008). Characterization and reductive amination of cyclohexanol and cyclohexanone over Cu/ZrO2 catalysts. Catalysis Communications, 9, 75–81. DOI: 10.1016/j.catcom.2007.05.016.

    Article  CAS  Google Scholar 

  • da Silva, R., Cataluña, R., & Martínez-Arias, A. (2009). Selective catalytic reduction of NOx using propene and ethanol over catalysts of Ag/Al2O3 prepared by microemulsion and promotional effect of hydrogen. Catalysis Today, 143, 242–246. DOI: 10.1016/j.cattod.2008.10.025.

    Article  Google Scholar 

  • Denis, P. A., Ventura, O. N., Le, H. T., & Nguyen, M. T. (2003). Density functional study of the decomposition pathways of nitroethane and 2-nitropropane. Physical Chemistry Chemical Physics, 5, 1730–1738. DOI: 10.1039/b300275f.

    Article  CAS  Google Scholar 

  • Djerboua, F., Benachour, D., & Touroude, R. (2005). On the performance of a highly loaded Co/SiO2 catalyst in the gas phase hydrogenation of crotonaldehyde: Thermal treatments-catalyst structure-selectivity relationship. Applied Catalysis A: General, 282, 123–133. DOI: 10.1016/j.apcata.2004.12.016.

    Article  CAS  Google Scholar 

  • Dzwigaj, S., Janas, J., Machej, T., & Che, M. (2007). Selective catalytic reduction of NO by alcohols on Coand Fe-Siβ catalysts. Catalysis Today, 119, 133–136. DOI: 10.1016/j.cattod.2006.08.055.

    Article  CAS  Google Scholar 

  • Dzwigaj, S., Janas, J., Mizera, J., Gurgul, J., Socha, R. P., & Che, M. (2008). Incorporation of copper in SiBEA zeolite as isolated lattice mononuclear Cu(II) species and its role in selective catalytic reduction of NO by ethanol. Catalysis Letters, 126, 36–42. DOI: 10.1007/s10562-008-9675-2.

    Article  CAS  Google Scholar 

  • Dzwigaj, S., Janas, J., Gurgul, J., Socha, R. P., Shishido, T., & Che, M. (2009a). Do Cu(II) ions need Al atoms in their environment to make CuSiBEA active in the SCR of NO by ethanol or propane? A spectroscopy and catalysis study. Applied Catalysis B: Environmental, 85, 131–138. DOI: 10.1016/j.apcatb.2008.07.003.

    Article  CAS  Google Scholar 

  • Dzwigaj, S., Janas, J., Rojek, W., Stievano, L., Wagner, F. E., Averseng, F., & Che, M. (2009b). Effect of iron impurities on the catalytic activity of BEA, MOR and MFI zeolites in the SCR of NO by ethanol. Applied Catalysis B: Environmental, 86, 45–52. DOI: 10.1016/j.apcatb.2008.07.017.

    Article  CAS  Google Scholar 

  • Flura, A., Can, F., Courtois, X., Royer, S., & Duprez, D. (2012). High-surface-area zinc aluminate supported silver catalysts for low-temperature SCR of NO with ethanol. Applied Catalysis B: Environmental, 126, 275–289. DOI: 10.1016/j.apcatb.2012.07.006.

    Article  CAS  Google Scholar 

  • Forzatti, P., Nova, I., & Tronconi, E. (2009). Enhanced NH3 selective catalytic reduction for NOx abatement. Angewandte Chemie International Edition, 48, 8366–8368. DOI: 10.1002/anie.200903857.

    Article  CAS  Google Scholar 

  • Forzatti, P., Lietti, L., Nova, I., & Tronconi, E. (2010). Diesel NOx aftertreatment catalytic technologies: Analogies in LNT and SCR catalytic chemistry. Catalysis Today, 151, 202–211. DOI: 10.1016/j.cattod.2010.02.025.

    Article  CAS  Google Scholar 

  • Furusawa, T., Seshan, K., Lercher, J. A., Lefferts, L., & Aika, K. I. (2002). Selective reduction of NO to N2 in the presence of oxygen over supported silver catalysts. Applied Catalysis B: Environmental, 37, 205–216. DOI: 10.1016/s0926-3373(01)00337-x.

    Article  CAS  Google Scholar 

  • Gac, W., Derylo-Marczewska, A., Pasieczna-Patkowska, S., Popivnyak, N., & Zukocinski, G. (2007). The influence of the preparation methods and pretreatment conditions on the properties of Ag-MCM-41 catalysts. Journal of Molecular Catalysis A: Chemical, 268, 15–23. DOI: 10.1016/j.molcata.2006.12.002.

    Article  CAS  Google Scholar 

  • Giecko, G., Borowiecki, T., Gac, W., & Kruk, J. (2008). Fe2O3/Al2O3 catalysts for the N2O decomposition in the nitric acid industry. Catalysis Today, 137, 403–409. DOI: 10.1016/j.cattod.2008.02.008.

    Article  CAS  Google Scholar 

  • He, H., & Yu, Y. B. (2005). Selective catalytic reduction of NOx over Ag/Al2O3 catalyst: from reaction mechanism to diesel engine test. Catalysis Today, 100, 37–47. DOI: 10.1016/j.cattod.2004.11.006.

    Article  CAS  Google Scholar 

  • He, H., Zhang, X. L., Wu, Q., Zhang, C. B., & Yu, Y. B. (2008). Review of Ag/Al2O3-reductant system in the selective catalytic reduction of NOx. Catalysis Surveys from Asia, 12, 38–55. DOI: 10.1007/s10563-007-9038-9.

    Article  CAS  Google Scholar 

  • He, H., Li, Y., Zhang, X. L., Yu, Y. B., & Zhang, C. B. (2010). Precipitable silver compound catalysts for the selective catalytic reduction of NOx by ethanol. Applied Catalysis A: General, 375, 258–264. DOI: 10.1016/j.apcata.2010.01.002.

    Article  CAS  Google Scholar 

  • Huang, D. L., Thi, T. H. D., Engeldinger, J., Schneider, M., Radnik, J., Richter, M., & Martin, A. (2011). TPR investigations on the reducibility of Cu supported on Al2O3, zeolite Y and SAPO-5. Journal of Solid State Chemistry, 184, 1915–1923. DOI: 10.1016/j.jssc.2011.05.042.

    Article  Google Scholar 

  • Janas, J., Machej, T., Gurgul, J., Socha, R. P., Che, M., & Dzwigaj, S. (2007). Effect of Co content on the catalytic activity of CoSiBEA zeolite in the selective catalytic reduction of NO with ethanol: Nature of the cobalt species. Applied Catalysis B: Environmental, 75, 239–248. DOI: 10.1016/j.apcatb.2007.07.029.

    Article  CAS  Google Scholar 

  • Janas, J., Gurgul, J., Socha, R. P., & Dzwigaj, S. (2009a). Effect of Cu content on the catalytic activity of CuSiBEA zeolite in the SCR of NO by ethanol: Nature of the copper species. Applied Catalysis B: Environmental, 91, 217–224. DOI: 10.1016/j.apcatb.2009.05.028.

    Article  CAS  Google Scholar 

  • Janas, J., Gurgul, J., Socha, R. P., Shishido, T., Che, M., & Dzwigaj, S. (2009b). Selective catalytic reduction of NO by ethanol: Speciation of iron and “structure-properties” relationship in FeSiBEA zeolite. Applied Catalysis B: Environmental, 91, 113–122. DOI: 10.1016/j.apcatb.2009.05.013.

    Article  CAS  Google Scholar 

  • Janas, J., Shishido, T., Che, M., & Dzwigaj, S. (2009c). Role of tetrahedral Co(II) sites of CoSiBEA zeolite in the selective catalytic reduction of NO: XRD, UV-vis, XAS and catalysis study. Applied Catalysis B: Environmental, 89, 196–203. DOI: 10.1016/j.apcatb.2008.11.028.

    Article  CAS  Google Scholar 

  • Janas, J., & Dzwigaj, S. (2011). Physico-chemical properties of FeAlBEA and FeSiBEA zeolites and their catalytic activity in the SCR of NO with ethanol or methane. Catalysis Today, 176, 272–276. DOI: 10.1016/j.cattod.2010.12.012.

    Article  CAS  Google Scholar 

  • Johnson, T. V. (2009). Review of diesel emissions and control. International Journal of Engine Research, 10, 275–285. DOI: 10.1243/14680874jer04009.

    Article  CAS  Google Scholar 

  • Johnson, W. L., II., Fisher, G. B., & Toops, T. J. (2012). Mechanistic investigation of ethanol SCR of NOx over Ag/Al2O3. Catalysis Today, 184, 166–177. DOI: 10.1016/j.cattod.2011.12.002.

    Article  CAS  Google Scholar 

  • Kim, Y. C., Park, N. C., Shin, J. S., Lee, S. R., Lee, Y. J., & Moon, D. J. (2003). Partial oxidation of ethylene to ethylene oxide over nanosized Ag/α-Al2O3 catalysts. Catalysis Today, 87, 153–162. DOI: 10.1016/j.cattod.2003.09.012.

    Article  CAS  Google Scholar 

  • Kosslick, H., Lischke, G., Landmesser, H., Parlitz, B., Storek, W., & Fricke, R. (1998). Acidity and catalytic behavior of substituted MCM-48. Journal of Catalysis, 176, 102–114. DOI: 10.1006/jcat.1998.2015.

    Article  CAS  Google Scholar 

  • Kröcher, O., & Brandenberger, S. (2012). Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH3. Chimia, 66, 687–693. DOI: 10.2533/chimia.2012.687.

    Article  Google Scholar 

  • Kumar, M. S., Schwidder, M., Grünert, W., & Brückner, A. (2004). On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNOx catalysts: new insights by a combined EPR and UV/VIS spectroscopic approach. Journal of Catalysis, 227, 384–397. DOI: 10.1016/j.jcat.2004.08.003.

    Article  CAS  Google Scholar 

  • Kwak, J. H., Tran, D., Burton, S. D., Szanyi, J., Lee, J. H., & Peden, C. H. F. (2012). Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites. Journal of Catalysis, 287, 203–209. DOI: 10.1016/j.jcat.2011.12.025.

    Article  CAS  Google Scholar 

  • Kyriienko, P., Popovych, N., Soloviev, S., Orlyk, S., & Dzwigaj, S. (2013). Remarkable activity of Ag/Al2O3/cordierite catalysts in SCR of NO with ethanol and butanol. Applied Catalysis B: Environmental, 140, 691–699. DOI: 10.1016/j.apcatb.2013.04.067.

    Article  Google Scholar 

  • L’vov, B. V. (1999). Kinetics and mechanism of thermal decomposition of silver oxide. Thermochimica Acta, 333, 13–19. DOI: 10.1016/s0040-6031(99)00085-4.

    Article  Google Scholar 

  • Lee, J. H., Schmieg, S. J., & Oh, S. H. (2008). Improved NOx reduction over the staged Ag/Al2O3 catalyst system. Applied Catalysis A: General, 342, 78–86. DOI: 10.1016/j.apcata.2008.03.012.

    Article  CAS  Google Scholar 

  • Liu, I. O. Y., & Cant, N. W. (2005). The reactions of nitroalkanes over Cu-MFI and Fe-MFI catalysts under hydrocarbonselective catalytic reduction conditions. Journal of Catalysis A: General, 230, 123–132. DOI: 10.1016/j.jcat.2004.11.001.

    Article  CAS  Google Scholar 

  • López-Suárez, F. E., Bueno-López, A., & Illán-Gámez, M. J. (2008). Cu/Al2O3 catalysts for soot oxidation: Copper loading effect. Applied Catalysis B: Environmental, 84, 651–658. DOI: 10.1016/j.apcatb.2008.05.019.

    Article  Google Scholar 

  • Mhadeshwar, A. B., Winkler, B. H., Eiteneer, B., & Hancu, D. (2009). Microkinetic modeling for hydrocarbon (HC)-based selective catalytic reduction (SCR) of NOx on a silver-based catalyst. Applied Catalysis B: Environmental, 89, 229–238. DOI: 10.1016/j.apcatb.2009.02.012.

    Article  CAS  Google Scholar 

  • Moos, R. (2010). Catalysts as sensors-a promising novel approach in automotive exhaust gas aftertreatment. Sensors, 10, 6773–6787. DOI: 10.3390/s100706773.

    Article  CAS  Google Scholar 

  • Musi, A., Massiani, P., Brouri, D., Trichard, J. M., & Da Costa, P. (2009). On the characterisation of silver species for SCR of NOx with ethanol. Catalysis Letters, 128, 25–30. DOI: 10.1007/s10562-008-9694-z.

    Article  CAS  Google Scholar 

  • Park, J. Y., Lee, Y. J., Khanna, P.K., Jun, K.W., Bae, J.W., & Kim, Y. H. (2010). Alumina-supported iron oxide nanoparticles as Fischer-Tropsch catalysts: Effect of particle size of iron oxide. Journal of Molecular Catalysis A: Chemical, 323, 84–90. DOI: 10.1016/j.molcata.2010.03.025.

    Article  CAS  Google Scholar 

  • Satokawa, S., Shibata, J., Shimizu, K. I., Satsuma, A., & Hattori, T. (2003). Promotion effect of H2 on the low temperature activity of the selective reduction of NO by light hydrocarbons over Ag/Al2O3. Applied Catalysis B: Environmental, 42, 179–186. DOI: 10.1016/s0926-3373(02)00231-x.

    Article  CAS  Google Scholar 

  • Shimoda, N., Faungnawakij, K., Kikuchi, R., Fukunaga, T., & Eguchi, K. (2009). Catalytic performance enhancement by heat treatment of CuFe2O4 spinel and γ-alumina composite catalysts for steam reforming of dimethyl ether. Applied Catalysis A: General, 365, 71–78. DOI: 10.1016/j.apcata.2009.05.049.

    Article  CAS  Google Scholar 

  • Sirotin, S. V., Moskovskaya, I. F., & Romanovsky, B. V. (2011). Synthetic strategy for Fe-MCM-41 catalyst: a key factor for homogeneous or heterogeneous phenol oxidation. Catalysis Science & Technology, 1, 971–980. DOI: 10.1039/c1cy00107h.

    Article  CAS  Google Scholar 

  • Tham, Y. F., Chen, J. Y., & Dibble, R. W. (2009). Development of a detailed surface mechanism for the selective catalytic reduction of NOx with ethanol on silver alumina catalyst. Proceedings of the Combustion Institute, 32, 2827–2833. DOI: 10.1016/j.proci.2008.06.190.

    Article  CAS  Google Scholar 

  • Wan, H. J., Wu, B. S., Zhang, C. H., Xiang, H. W., Li, Y. W., Xu, B. F., & Yi, F. (2007). Study on Fe-Al2O3 interaction over precipitated iron catalyst for Fischer-Tropsch synthesis. Catalysis Communications, 8, 1538–1545. DOI: 10.1016/j.catcom.2007.01.002.

    Article  CAS  Google Scholar 

  • Wan, H. J., Wu, B. S., Xiang, H. W., & Li, Y. W. (2012). Fischer-Tropsch synthesis: Influence of support incorporation manner on metal dispersion, metal-support interaction, and activities of iron catalysts. ACS Catalysis, 2, 1877–1883. DOI: 10.1021/cs200584s.

    Article  CAS  Google Scholar 

  • Wang, Z., Wan, H. Q., Liu, B., Zhao, X., Li, X. W., Zhu, H. Y., Xu, X., Ji, F. G., Sun, K. Q., Dong, L., & Chen, Y. (2008). In-fluence of magnesia modification on the properties of copper oxide supported on γ-alumina. Journal of Colloid and Interface Science, 320, 520–526. DOI: 10.1016/j.jcis.2008.02.001.

    Article  CAS  Google Scholar 

  • Wang, Q. S., Ng, D., & Mannan, M. S. (2009). Study on the reaction mechanism and kinetics of the thermal decomposition of nitroethane. Industrial & Engineering Chemistry Research, 48, 8745–8751. DOI: 10.1021/ie900849n.

    Article  CAS  Google Scholar 

  • Westermann, A., & Azambre, B. (2011). Performances of novel sulfated ceria-zirconia catalysts for the selective catalytic reduction of NOx by ethanol. Catalysis Today, 176, 441–448. DOI: 10.1016/j.cattod.2010.10.071.

    Article  CAS  Google Scholar 

  • Worch, D., Suprun, W., & Gläser, R. (2011). Supported transition metal-oxide catalysts for HC-SCR DeNOx with propene. Catalysis Today, 176, 309–313. DOI: 10.1016/j.cattod.2010.12.008.

    Article  CAS  Google Scholar 

  • Wu, Q., He, H., & Yu, Y. B. (2005). In situ DRIFTS study of the selective reduction of NOx with alcohols over Ag/Al2O3 catalyst: Role of surface enolic species. Applied Catalysis B: Environmental, 61, 107–113. DOI: 10.1016/j.apcatb.2005.04.012.

    Article  CAS  Google Scholar 

  • Wu, Q., Yu, Y. B., & He, H. (2006). Mechanistic study of selective catalytic reduction of NOx with C2H5OH and CH3OCH3 over Ag/Al2O3 by in situ DRIFTS. Chinese Journal of Catalysis, 27, 993–998. DOI: 10.1016/s1872-2067(06)60052-1.

    Article  CAS  Google Scholar 

  • Yu, Y. B., He, H., Feng, Q. C., Gao, H. W., & Yang, X. (2004). Mechanism of the selective catalytic reduction of NOx by C2H5OH over Ag/Al2O3. Applied Catalysis B: Environmental, 49, 159–171. DOI: 10.1016/j.apcatb.2003.12.004.

    Article  CAS  Google Scholar 

  • Zhang, X. L., He, H., & Ma, Z. C. (2007). Hydrogen promotes the selective catalytic reduction of NOx by ethanol over Ag/Al2O3. Catalysis Communications, 8, 187–192. DOI: 10.1016/j.catcom.2006.06.005.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Gläser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worch, D., Suprun, W. & Gläser, R. Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity. Chem. Pap. 68, 1228–1239 (2014). https://doi.org/10.2478/s11696-013-0533-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0533-3

Keywords

Navigation