Skip to main content
Log in

Thermo-chemical properties of biomass from Posidonia oceanica

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Posidonia oceanica (PO) is a marine plant endemic to the Mediterranean basin, forming extensive grasslands. Onshore residues represent a major environmental, economic, social and hygienic problem in all coastal zones of the Mediterranean basin due to the great disturbance they cause to bathers and beachfront populations. This work sought to evaluate the thermo-chemical properties of PO in pyrolysis and thermo-oxidative degradation processes. The investigations were carried out using a thermogravimetric analyser (TGA) coupled to a quadrupole mass spectrometer (MS) and an infrared spectrometer (FTIR). In addition, proximate, ultimate, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and biodegradability analyses were carried out on PO. The biodegradability analysis confirmed that residues of PO were a biodegradable material. Accordingly, the application of PO as a feedstock for combustion/co-combustion or biorefining is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahamad, T., & Alshehri, S. M. (2012). TG-FTIR-MS (Evolved Gas Analysis) of bidi tobacco powder during combustion and pyrolysis. Journal of Hazardous Materials, 199–200, 200–208. DOI: 10.1016/j.jhazmat.2011.10.090.

    Article  Google Scholar 

  • Babich, I. V., van der Hulst, M., Lefferts, L., Moulijn, J. A., O’Connor, P., & Seshan, K. (2011). Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass and Bioenergy, 35, 3199–3207. DOI: 10.1016/j.biombioe.2011.04.043.

    Article  CAS  Google Scholar 

  • Bassilakis, R., Carangelo, R. M., & Wójtowicz, M. A. (2001). TG-FTIR analysis of biomass pyrolysis. Fuel, 80, 1765–1786. DOI: 10.1016/s0016-2361(01)00061-8.

    Article  CAS  Google Scholar 

  • Budrugeac, P., Popescu, C., & Segal, E. (2001). Change of the apparent reaction order with temperature as a consequence of the reaction mechanism complexity. Journal of Thermal Analysis and Calorimetry, 64, 821–827. DOI: 10.1023/a:1011521201269.

    Article  CAS  Google Scholar 

  • Budrugeac, P. (2013). Applicability of non-isothermal modelfree predictions for assessment of conversion vs. time curves for complex processes in isothermal and quasi-isothermal conditions. Thermochimica Acta, 558, 67–73. DOI: 10.1016/ j.tca.2013.02.001.

    Article  CAS  Google Scholar 

  • Cocozza, C., Parente, A., Zaccone, C., Mininni, C., Santamaria, P., & Miano, T. (2011a). Chemical, physical and spectroscopic characterization of Posidonia oceanica (L.) Del. residues and their possible recycle. Biomass and Bioenergy, 35, 799–807. DOI: 10.1016/j.biombioe.2010.10.033.

    Article  CAS  Google Scholar 

  • Cocozza, C., Parente, A., Zaccone, C., Mininni, C., Santamaria, P., & Miano, T. (2011b). Comparative management of offshore posidonia residues: Composting vs. energy recovery. Waste Management, 31, 78–84. DOI: 10.1016/j.wasman.2010.08.016.

    Article  CAS  Google Scholar 

  • de Jong, W., Di Nola, G., Venneker, B. C. H., Spliethoff, H., & Wójtowicz, M. A. (2007). TG-FTIR pyrolysis of coal and secondary biomass fuels: Determination of pyrolysis kinetic parameters for main species and NOx precursors. Fuel, 86, 2367–2376. DOI: 10.1016/j.fuel.2007.01.032.

    Article  Google Scholar 

  • European Committee for Standardization (2011). Solid recovered fuels — methods for the determination of biomass content. EN 15440:2011/AC:2011. Brussels, Belgium: ECS.

    Google Scholar 

  • Gao, N. B., Li, A. M., Quan, C., Du, L., & Duan, Y. (2013). TG-FTIR and Py-GC/MS analysis on pyrolysis and combustion of pine sawdust. Journal of Analytical and Applied Pyrolysis, 100, 26–32. DOI: 10.1016/j.jaap.2012.11.009.

    Article  CAS  Google Scholar 

  • Gašparovič, L., Koreňová, Z., & Jelemensky, Ľ. (2010). Kinetic study of wood chips decomposition by TGA. Chemical Papers, 64, 174–181. DOI: 10.2478/s11696-009-0109-4.

    Article  Google Scholar 

  • Gašparovič, L., Hrablay, I., Vojteková, Z., & Jelemensky, Ľ. (2011). Kinetic study of pyrolysis of waste water treatment plant sludge. Chemical Papers, 65, 139–146. DOI: 10.2478/s11696-010-0081-z.

    Article  Google Scholar 

  • Glarborg, P., Jensen, A. D., & Johnsson, J. E. (2003). Fuel nitrogen conversion in solid fuel fired systems. Progress in Energy and Combustion Science, 29, 89–113. DOI: 10.1016/s0360-1285(02)00031-x.

    Article  CAS  Google Scholar 

  • Grotkjær, T., Dam-Johansen, K., Jensen, A. D., & Glarborg, P. (2003). An experimental study of biomass ignition. Fuel, 82, 825–833. DOI: 10.1016/s0016-2361(02)00369-1.

    Article  Google Scholar 

  • Haykiri-Acma, H., Yaman, S., & Kucukbayrak, S. (2013). Production of biobriquettes from carbonized brown seaweed. Fuel Processing Technology, 106, 33–40. DOI: 10.1016/j.fuproc.2012.06.014.

    Article  CAS  Google Scholar 

  • Horník, M., Šuňovská, D., Pipíška, M., & Augustín, J. (2013). Continuous sorption of synthetic dyes on dried biomass of microalga Chlorella pyrenoidosa. Chemical Papers, 67, 254–264. DOI: 10.2478/s11696-012-0235-2.

    Article  Google Scholar 

  • Idris, S. S., Rahman, N. A., & Ismail, K. (2012). Combustion characteristics of Malaysian oil palm biomass, subbituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresource Technology, 123, 581–591. DOI: 10.1016/j.biortech.2012.07.065.

    Article  CAS  Google Scholar 

  • Jung, K. A., Lim, S. R., Kim, Y., & Park, J. M. (2013). Potentials of macroalgae as feedstocks for biorefinery. Bioresource Technology, 135, 182–190. DOI: 10.1016/j.biortech.2012.10.025.

    Article  CAS  Google Scholar 

  • Kazalski, K., Zuwała, J., & Głód, K. (2010). Badania nad efektem auto-odsiarczania przy współspalaniu węgla i biomasy. Karbo, 4, 168–172. (in Polish)

    Google Scholar 

  • Kwon, E. E., Jeon, Y. J., & Yi, H. (2012). New candidate for biofuel feedstock beyond terrestrial biomass for thermochemical process (pyrolysis/gasification) enhanced by carbon dioxide (CO2). Bioresource Technology, 123, 673–677. DOI: 10.1016/j.biortech.2012.07.035.

    Article  CAS  Google Scholar 

  • Lee, S. B., & Fasina, O. (2009). TG-FTIR analysis of switchgrass pyrolysis. Journal of Analytical and Applied Pyrolysis, 86, 39–43. DOI: 10.1016/j.jaap.2009.04.002.

    Article  CAS  Google Scholar 

  • Li, S., Lyons-Hart, J., Banyasz, J., & Shafer, K. (2001). Realtime evolved gas analysis by FTIR method: An experimental study of cellulose pyrolysis. Fuel, 80, 1809–1817. DOI: 10.1016/s0016-2361(01)00064-3.

    Article  CAS  Google Scholar 

  • Liu, Q., Wang, S. R., Zheng, Y., Luo, Z. Y., & Cen, K. F. (2008). Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 82, 170–177. DOI: 10.1016/j.jaap.2008.03.007.

    Article  CAS  Google Scholar 

  • Liu, Q., Zhong, Z. P., Wang, S. R., & Luo, Z. Y. (2011). Interactions of biomass components during pyrolysis: A TG-FTIR study. Journal of Analytical and Applied Pyrolysis, 90, 213–218. DOI: 10.1016/j.jaap.2010.12.009.

    Article  CAS  Google Scholar 

  • Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37, 52–68. DOI: 10.1016/j.pecs.2010.01.003.

    Article  CAS  Google Scholar 

  • NIST (2005). NIST standard reference database number 69. http://webbook.nist.gov/chemistry.

    Google Scholar 

  • Orfão, J. J. M., Antunes, F. J. A., & Figueiredo, J. L. (1999). Pyrolysis kinetics of lignocellulosic materials — three independent reactions model. Fuel, 78, 349–358. DOI: 10.1016/s0016-2361(98)00156-2.

    Article  Google Scholar 

  • Ross, A. B., Jones, J. M., Kubacki, M. L., & Bridgeman, T. (2008). Classification of macroalgae as fuel and its thermochemical behaviour. Bioresource Technology, 99, 6494–6504. DOI: 10.1016/j.biortech.2007.11.036.

    Article  CAS  Google Scholar 

  • Sommersacher, P., Brunner, T., & Obernberger, I. (2012). Fuel indexes: A novel method for the evaluation of relevant combustion properties of new biomass fuels. Energy & Fuels, 26, 380–390. DOI: 10.1021/ef201282y.

    Article  CAS  Google Scholar 

  • Takáčová, A., Mackluľak, T., Smolinská, M., Hutňan, M., & Olejníková, P. (2012). Influence of selected biowaste materials pre-treatment on their anaerobic digestion. Chemical Papers, 66, 129–137. DOI: 10.2478/s11696-011-0107-1.

    Article  Google Scholar 

  • Toftegaard, M. B., Brix, J., Jensen, P. A., Glarborg, P., & Jensen, A. D. (2010). Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science, 36, 581–625. DOI: 10.1016/j.pecs.2010.02.001.

    Article  CAS  Google Scholar 

  • Varol, M., Atimtay, A. T., Bay, B., & Olgun, H. (2010). Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis. Thermochimica Acta, 510, 195–201. DOI: 10.1016/j.tca.2010.07.014.

    Article  CAS  Google Scholar 

  • Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89, 913–933. DOI: 10.1016/j.fuel.2009.10.022.

    Article  CAS  Google Scholar 

  • Wang, J., Wang, G., Zhang, M. X., Chen, M. Q., Li, D. M., Min, F. F., Chen, M. G., Zhang, S. P., Ren, Z. W., & Yan, Y. J. (2006). A comparative study of thermolysis characteristics and kinetics of seaweeds and fir wood. Process Biochemistry, 41, 1883–1886. DOI: 10.1016/j.procbio.2006.03.018.

    Article  CAS  Google Scholar 

  • Williams, A., Jones, J. M., Ma, L., & Pourkashanian, M. (2012). Pollutants from the combustion of solid biomass fuels. Progress in Energy and Combustion Science, 38, 113–137. DOI: 10.1016/j.pecs.2011.10.001.

    Article  CAS  Google Scholar 

  • Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 45, 651–671. DOI: 10.1016/s0196-8904(03)00177-8.

    Article  CAS  Google Scholar 

  • Yang, H. P., Yan, R., Chin, T., Liang, D. T., Chen, H. P., & Zheng, C. G. (2004). Thermogravimetric analysis — Fourier transform infrared analysis of palm oil waste pyrolysis. Energy & Fuels, 18, 1814–1821. DOI: 10.1021/ef030193m.

    Article  CAS  Google Scholar 

  • Yang, C. Y., Lu, X. S., Lin, W. G., Yang, X. M., & Yao, J. Z. (2006). TG-FTIR study on corn straw pyrolysis-influence of minerals. Chemical Research in Chinese Universities, 22, 524–532. DOI: 10.1016/s1005-9040(06)60155-4.

    Article  CAS  Google Scholar 

  • Yang, H. P., Yan, R., Chen, H. P., Lee, D. H., & Zheng, C. G. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781–1788. DOI: 10.1016/j.fuel.2006.12.013.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Lasek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plis, A., Lasek, J., Skawińska, A. et al. Thermo-chemical properties of biomass from Posidonia oceanica . Chem. Pap. 68, 879–889 (2014). https://doi.org/10.2478/s11696-013-0532-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0532-4

Keywords

Navigation