Skip to main content
Log in

Kinetic analysis of cellulose pyrolysis: a short review

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Since the 1950s, cellulose pyrolysis has been the subject of intense study, with kinetic analyses forming a major part of these studies. They represent useful tools for a better understanding of the physicochemical process and for the proper design of industrial pyrolysis units. Until recently, the methods most frequently used in these analyses were based on model-fitting, i.e. the fitting of the experimental data to a number of mathematical models. Nowadays, other methods, so-called “model-free” methods, are considered to be more suited. These are based on the principle that, at constant conversion, the reaction rate depends only on temperature. In its first part, this short review presents the particularities and drawbacks of the traditional model-fitting models. Subsequently, several main contributions in this field are listed and discussed. Finally, the more suited “model-free” (isoconversional) methods are explained and several main studies presented, as well as a comparison of this method with the model-fitting ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboulkas, A., & El Harfi, K. (2008). Study of the kinetics and mechanisms of thermal decomposition of Moroccan Tarfaya oil shale and its kerogen. Oil Shale, 25, 426–443. DOI: 10.3176/oil.2008.4.04.

    Article  CAS  Google Scholar 

  • Alves, S. S., & Figueiredo, J. L. (1989). Kinetics of cellulose pyrolysis modelled by three consecutive first-order reactions. Journal of Analytical and Applied Pyrolysis, 17, 37–46. DOI: 10.1016/0165-2370(89)85004-1.

    Article  CAS  Google Scholar 

  • AGEE-Stat (2011). Renewable energy sources 2010. Bonn, Germany: Federal Ministry for the Environment, Nature Conservation and Nuclear Safety.

    Google Scholar 

  • Agrawal, R. K. (1988). Kinetics of reactions involved in pyrolysis of cellulose. II. The modified Kilzer-Broido model. The Canadian Journal of Chemical Engineering, 66, 413–418. DOI: 10.1002/cjce.5450660310

    CAS  Google Scholar 

  • Banyasz, J. L., Li, S., Lyons-Hart, J. L., & Shafer, K. H. (2001). Cellulose pyrolysis: the kinetics of hydroxyacetaldehyde evolution. Journal of Analytical and Applied Pyrolysis, 57, 223–248. DOI: 10.1016/s0165-2370(00)00135-2.

    Article  CAS  Google Scholar 

  • Barud, H. S., Ribeiro, C. A., Capela, J. M. V., Crespi, M. S., Ribeiro, S. J. L., & Messadeq, Y. (2011). Kinetic parameters for thermal decomposition of microcrystalline, vegetal, and bacterial cellulose. Journal of Thermal Analysis and Calorimetry, 105, 421–426. DOI: 10.1007/s10973-010-1118-9.

    Article  CAS  Google Scholar 

  • Blažek, J. (2005). Study of the reaction kinetics of the thermal degradation of polymer. Ph. D. thesis, Institut National Polytechnique de Toulouse, Toulouse, France.

    Google Scholar 

  • Broido, A., Javier-Son, A. C., Ouano, A. C., Barrell, E. M., II (1973). Molecular weight decrease in the early pyrolysis of crystalline and amorphous cellulose. Journal of Applied Polymer Science, 17, 3627–3635. DOI: 10.1002/app.1973.070171207.

    Article  Google Scholar 

  • Broido, A., & Nelson, M. A. (1975). Char yield on pyrolysis of cellulose. Combustion and Flame, 24, 263–268. DOI: 10.1016/0010-2180(75)90156-x.

    Article  CAS  Google Scholar 

  • Broido, A. (1976). Kinetics of solid-phase cellulose pyrolysis. In F. Shafizadeh, K. V. Sarkanen, & D. A. Tillman (Eds.), Thermal uses and properties of carbohydrates and lignins (pp. 19–36). New York, NY, USA: Academic Press. DOI: 10.1016/b978-0-12-637750-7.50006-6.

    Chapter  Google Scholar 

  • Brown, M. E., Maciejewski, M., Vyazovkin, S., Nomen, R., Sempere, J., Burnham, A., Opfermann, J., Strey, R., Anderson, H. L., Kemmler, A., Keuleers, R., Janssens, J., Desseyn, H. O., Li, C. R., Tang, T. B., Roduit, B., Malek, J., & Mitsuhashi, T. (2000). Computational aspects of kinetic analysis. Part A: The ICTAC kinetics project-data, methods and results. Thermochimica Acta, 355, 125–143. DOI: 10.1016/s0040-6031(00)00443-3.

    Article  CAS  Google Scholar 

  • Budrugeac, P., & Segal, E. (2003). Prediction of the isothermal behavior of solid-gas systems from non-isothermal data. Journal of Thermal Analysis and Calorimetry, 72, 831–837. DOI: 10.1023/a:1025014114527.

    Article  CAS  Google Scholar 

  • Cabrales, L., & Abidi, N. (2010). On the thermal degradation of cellulose in cotton fibers. Journal of Thermal Analysis and Calorimetry, 102, 485–491. DOI: 10.1007/s10973-010-0911-9.

    Article  CAS  Google Scholar 

  • Capart, R., Khezami, L., & Burnham, A. K. (2004). Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochimica Acta, 417, 79–89. DOI: 10.1016/j.tca.2004.01.029.

    Article  CAS  Google Scholar 

  • Chen, W. H., & Kuo, P. C. (2011). Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy, 36, 6451–6460. DOI: 10.1016/j.energy.2011.09.022.

    Article  CAS  Google Scholar 

  • Conesa, J. A., Caballero, J. A., Marcilla, A., & Font, R. (1995). Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochimica Acta, 254, 175–192. DOI: 10.1016/0040-6031(94)02102-t.

    Article  CAS  Google Scholar 

  • Di Blasi, C. (1993). Modeling and simulation of combustion processes of charring and non-charring solid fuels. Progress in Energy and Combustion Science, 19, 71–104. DOI: 10.1016/0360-1285(93)90022-7.

    Article  Google Scholar 

  • Di Blasi, C. (1996). Heat transfer mechanisms and multistep kinetics in the ablative pyrolysis of cellulose. Chemical Engineering Science, 51, 2211–2220. DOI: 10.1016/0009-2509(96)00078-4.

    Article  Google Scholar 

  • Di Blasi, C. (1998). Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels. Journal of Analytical and Applied Pyrolysis, 47, 43–64. DOI: 10.1016/s0165-2370(98)00079-5.

    Article  Google Scholar 

  • Dickinson, C. F., & Heal, G. R. (2009a). A review of the ICTAC Kinetics Project, 2000. Part 1. Isothermal results. Thermochimica Acta, 494, 1–14. DOI: 10.1016/j.tca.2009.05.003.

    Article  CAS  Google Scholar 

  • Dickinson, C. F., & Heal, G. R. (2009b). A review of the ICTAC kinetics project, 2000. Part 2. Non-isothermal results. Thermochimica Acta, 494, 15–25. DOI: 10.1016/j.tca.2009.05.009.

    Article  CAS  Google Scholar 

  • Diebold, J. P. (1994). A unified, global model for the pyrolysis of cellulose. Biomass and Bioenergy, 7, 75–85. DOI: 10.1016/0961-9534(94)00039-v.

    Article  CAS  Google Scholar 

  • Evans, R. J., & Milne, T. A. (1987). Molecular characterization of the pyrolysis of biomass. 1. Fundamentals. Energy & Fuels, 1, 123–137. DOI: 10.1021/ef00002a001.

    Article  CAS  Google Scholar 

  • Fisher, T., Hajaligol, M., Waymack, B., & Kellogg, D. (2002). Pyrolysis behavior and kinetics of biomass derived materials. Journal of Analytical and Applied Pyrolysis, 62, 331–349. DOI: 10.1016/s0165-2370(01)00129-2.

    Article  CAS  Google Scholar 

  • Font, R., & García, A. N. (1995). Application of the transition state theory to the pyrolysis of biomass and tars. Journal of Analytical and Applied Pyrolysis, 35, 249–258. DOI: 10.1016/0165-2370(95)00916-8.

    Article  CAS  Google Scholar 

  • Galwey, A. K. (2004). Is the science of thermal analysis kinetics based on solid foundations? A literature appraisal. Thermochimica Acta, 413, 139–183. DOI: 10.1016/j.tca.2003.10.013.

    Article  CAS  Google Scholar 

  • Garcia-Perez, M. (2008). The formation of polyaromatic hydrocarbons and dioxins during pyrolysis: A review of the literature with descriptions of biomass composition, fast pyrolysis technologies and thermochemical reactions. Pullman, WA, USA: Washington State University. (WSUEEP08-010)

    Google Scholar 

  • Gavillon, R. (2007). Préparation et caractérisation des matériaux cellulosiques ultra poreux. Ph. D. thesis, école des Mines de Paris, Paris, France. (in French)

    Google Scholar 

  • Grønli, M., Antal, M. J., Jr., & Várhegyi, G. (1999). A roundrobin study of cellulose pyrolysis kinetics by thermogravimetry. Industrial & Engineering Chemistry Research, 38, 2238–2244. DOI: 10.1021/ie980601n.

    Article  Google Scholar 

  • Hopkins, M. W., DeJenga, C., & Antal, M. J., Jr. (1984). The flash pyrolysis of cellulosic materials using concentrated visible light. Solar Energy, 32, 547–551. DOI: 10.1016/0038-092x(84)90269-x.

    Article  CAS  Google Scholar 

  • Hu, S., Jess, A., & Xu, M. H. (2007). Kinetic study of Chinese biomass slow pyrolysis: Comparison of different kinetic models. Fuel, 86, 2778–2788. DOI: 10.1016/j.fuel.2007.02.031.

    Article  CAS  Google Scholar 

  • Huang, Y. F., Kuan, W. H., Chiueh, P. T., & Lo, S. L. (2011). A sequential method to analyze the kinetics of biomass pyrolysis. Bioresource Technology, 102, 9241–9246. DOI: 10.1016/j.biortech.2011.07.015.

    Article  CAS  Google Scholar 

  • Kim, S. D., & Eom, Y. J. (2006). Estimation of kinetic triplet of cellulose pyrolysis reaction from isothermal kinetic results. Korean Journal of Chemical Engineering, 23 (3), 409–414. DOI: 10.1007/bf02706742.

    Article  Google Scholar 

  • Kilzer, F. J., & Broido, A. (1965). Speculations on the nature of cellulose pyrolysis. Pyrodynamics, 2, 151–163.

    CAS  Google Scholar 

  • Lédé, J. (2012). Cellulose pyrolysis kinetics: An historical review on the existence and role of intermediate active cellulose. Journal of Analytical and Applied Pyrolysis, 94, 17–32. DOI: 10.1016/j.jaap.2011.12.019.

    Article  Google Scholar 

  • Lewellen, P. C., Peters, W. A., & Howard, J. B. (1977). Cellulose pyrolysis kinetics and char formation mechanism. Symposium (International) on Combustion, 16, 1471–1480. DOI: 10.1016/s0082-0784(77)80429-3.

    Article  Google Scholar 

  • Li, C. R., & Tang, T. B. (1997). Dynamic thermal analysis of solid-state reactions. The ultimate method for data analysis? Journal of Thermal Analysis, 49, 1243–1248. DOI: 10.1007/bf01983680.

    Article  CAS  Google Scholar 

  • Li, C. R., & Tang, T. B. (1999). Isoconversional method for kinetic analysis of solid-state reactions from dynamics thermoanalytical data. Journal of Materials Science, 34, 3467–3470. DOI: 10.1023/a:1004605820783.

    Article  CAS  Google Scholar 

  • Liao, Y. F., Wang, S. R., & Ma, X. Q. (2004). Study of reaction mechanisms in cellulose pyrolysis. Preprints of Papers-American Chemical Society, Division of Fuel Chemistry, 49, 407–411.

    CAS  Google Scholar 

  • Liu, Q., Wang, S. R., Wang, K. G., Guo, X. J., Luo, Z. Y., & Cen, K. F. (2008). Mechanism of formation and consequent evolution of active cellulose during cellulose pyrolysis. Acta Physico-Chimica Sinica, 24, 1957–1963. DOI: 10.1016/s1872-1508 (08)60078-9.

    Article  CAS  Google Scholar 

  • Mamleev, V., Bourbigot, S., & Yvon, J. (2007). Kinetic analysis of the thermal decomposition of cellulose: The change of the rate limitation. Journal of Analytical and Applied Pyrolysis, 80, 141–150. DOI: 10.1016/j.jaap.2007.01.012.

    Article  CAS  Google Scholar 

  • Mamleev, V., Bourbigot, S., Le Bras, M., & Yvon, J. (2009). The facts and hypotheses relating to phenomenological model of cellulose pyrolysis: Interdependence of the steps. Journal of Analytical and Applied Pyrolysis, 84, 1–17. DOI: 10.1016/j.jaap.2008.10.014.

    Article  CAS  Google Scholar 

  • Marra, F. (2009). Numerical analysis for kinetics and yield of wood biomass pyrolysis. In N. Mastorakis, & J. Sakellaris (Eds.), Advances in numerical methods (chapter 11, pp. 127–136). Heidelberg, Germany: Springer. DOI: 10.1007/978-0-387-76483-211.

    Chapter  Google Scholar 

  • Miller, R. S., & Bellan, J. (1997). A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combustion Science and Technology, 126, 97–137. DOI: 10.1080/00102209708935670.

    Article  CAS  Google Scholar 

  • Ranzi, E., Cuoci, A., Faravelli, T., Frassoldati, A., Migliavacca, G., Pierucci, S., & Sommariva, S. (2008). Chemical kinetics of biomass pyrolysis. Energy & Fuels, 22, 4292–4300. DOI: 10.1021/ef800551t.

    Article  CAS  Google Scholar 

  • Reed, T. B., & Cowdery, C. D. (1987). Heat flux requirements for fast pyrolysis and a new method for generating biomass vapor. In 193rd National Meeting of the American Chemical Society, April 5–10, 1987. Denver, CO, USA: American Chemical Society Division of Petroleum Chemistry.

    Google Scholar 

  • Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., Pascual-Cosp, J., Benítez-Guerrero, M., & Criado, J. M. (2011). An improved model for the kinetic description of the thermal degradation of cellulose. Cellulose, 18, 1487–1498. DOI: 10.1007/s10570-011-9602-3.

    Article  Google Scholar 

  • Sbirrazzuoli, N., Vincent, L., Mija, A., & Guigo, N. (2009). Integral, differential and advanced isoconversional methods. Complex mechanisms and isothermal predicted conversiontime curves. Chemometrics and Intelligent Laboratory Systems, 96, 219–226. DOI: 10.1016/j.chemolab.2009.02.002.

    Article  CAS  Google Scholar 

  • Scott, D. S., Piskorz, J., & Radlein, D. (1989). Thermal conversion of biomass to liquids by the Waterloo fast pyrolysis process. In E. Mattucci, G. Grassi, & W. Palz (Eds.), Proceedings of Pyrolysis as a Basic Technology for Large Agro-Energy Projects, October 15–16, 1987 (pp. 115–124). Brussels, Belgium: Office for Official Publications of the European Communities.

    Google Scholar 

  • Sewry, J. D., & Brown, M. E. (2002). “Model-free” kinetic analysis? Thermochimica Acta, 390, 217–225. DOI: 10.1016/s0040-6031(02)00083-7.

    Article  CAS  Google Scholar 

  • Shafizadeh, F. (1968). Pyrolysis and combustion of cellulosic materials. Advances in Carbohydrate Chemistry, 23, 419–474. DOI: 10.1016/s0096-5332(08)60173-3.

    CAS  Google Scholar 

  • Shafizadeh, F., & Bradbury, A. G. W. (1979). Thermal degradation of cellulose in air and nitrogen at low temperatures. Journal of Applied Polymer Science, 23, 1431–1442. DOI: 10.1002/app.1979.070230513.

    Article  CAS  Google Scholar 

  • Shafizadeh, F. (1982). Introduction to pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis, 3, 283–305. DOI: 10.1016/0165-2370(82)80017-x.

    Article  CAS  Google Scholar 

  • Šimon, P. (2005). Considerations on the single-step kinetics approximation. Journal of Thermal Analysis and Calorimetry, 82, 651–657. DOI: 10.1007/s10973-005-0945-6.

    Article  Google Scholar 

  • Sonobe, T., & Worasuwannarak, N. (2008). Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel, 87, 414–421. DOI: 10.1016/j.fuel.2007.05.004.

    Article  CAS  Google Scholar 

  • Stamm, A. J. (1956). Thermal degradation of wood and cellulose. Industrial & Engineering Chemistry, 48, 413–417. DOI: 10.1021/ie51398a022.

    Article  CAS  Google Scholar 

  • Tihay, V., Boulnois, C., & Gillard, P. (2011). Influence of oxygen concentration on the kinetics of cellulose wadding degradation. Thermochimica Acta, 525, 16–24. DOI: 10.1016/j.tca.2011.07.016.

    Article  CAS  Google Scholar 

  • Várhegyi, G., Antal, M. J., Jr., Szekely, T., & Szabó, P. (1989). Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugarcane bagasse. Energy & Fuels, 3, 329–335. DOI: 10.1021/ef00015a012.

    Article  Google Scholar 

  • Várhegyi, G., Jakab, E., & Antal, M. J., Jr. (1994). Is the Broido-Shafizadeh model for cellulose pyrolysis true? Energy & Fuel, 8, 1345–1352. DOI: 10.1021/ef00048a025.

    Article  Google Scholar 

  • Várhegyi, G., Antal, M. J., Jr., Jakab, E., & Szabó, P. (1997). Kinetic modeling of biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 42, 73–87. DOI: 10.1016/s0165-2370(96)00971-0.

    Article  Google Scholar 

  • Völker, S., & Rieckmann, Th. (2002). Thermogravimetric investigation of cellulose pyrolysis — impact of initial and final mass on kinetic results. Journal of Analytical and Applied Pyrolysis, 62, 165–177. DOI: 10.1016/s0165-2370(01)00113-9.

    Article  Google Scholar 

  • Vyazovkin, S. (1996). A unified approach to kinetic processing of nonisothermal data. International Journal of Chemical Kinetics, 28(2), 95–101. DOI: 10.1002/(SICI)1097-4601(1996)28:2〈95::AID-KIN4〉3.0.CO;2-G.

    Article  CAS  Google Scholar 

  • Vyazovkin, S., & Dollimore, D. (1996). Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. Journal of Chemical Information and Modeling, 36, 42–45. DOI: 10.1021/ci950062m.

    Article  CAS  Google Scholar 

  • Vyazovkin, S., & Wight, C. A. (1997). Kinetics in solids. Annual Review of Physical Chemistry, 48, 125–149. DOI: 10.1146/annurev.physchem.48.1.125.

    Article  CAS  Google Scholar 

  • White, J. E., Catallo, W. J., & Legendre, B. L. (2011). Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural case studies. Journal of Analytical and Applied Pyrolysis, 91, 1–33. DOI: 10.1016/j.jaap.2011.01.004.

    Article  CAS  Google Scholar 

  • Zhu, G. Y., Zhu, X., Xiao, Z. B., & Yi, F. P. (2012). Study of cellulose pyrolysis using an in situ visualization technique and thermogravimetric analyzer. Journal of Analytical and Applied Pyrolysis, 94, 126–130. DOI: 10.1016/j.jaap.2011.11.016.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Şerbănescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şerbănescu, C. Kinetic analysis of cellulose pyrolysis: a short review. Chem. Pap. 68, 847–860 (2014). https://doi.org/10.2478/s11696-013-0529-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0529-z

Keywords

Navigation