Skip to main content
Log in

Enzymatic synthesis of a chiral chalcogran intermediate

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Two lipases, Novozyme 435 (lipase B from Candida Antarctica) and Lipozyme TL IM (Thermomyces lanuginosus) were used successfully for the kinetic resolution of racemic 1-(2-furyl)-3-pentanol, the key intermediate in synthesis of the bark beetle pheromone, chalcogran. The desired S-(+)-enantiomer was prepared in enantiomeric excesses higher than 98 % and with yields of 26.3 % and 32.5 %, respectively. Methyl tert-butyl ether and vinyl acetate were found to be the best reaction media and the acetyl donor to achieve fast and effective resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beck, J. J., Mahoney, N. E., Cook, D., & Gee, W. S. (2012). Generation of the volatile spiroketals conophthorin and chalcogran by fungal spores on polyunsaturated fatty acids common to almonds and pistachios. Journal of Agricultural and Food Chemistry, 60, 11869–11876. DOI: 10.1021/jf304157q.

    Article  CAS  Google Scholar 

  • Byers, J. A., Högberg, H. E., Unelius, C. R., Birgersson, G., & Löfqvist, J. (1989). Structure-activity studies on aggregation pheromone components of Pityogenes chalcographus (Coleoptera: Scolytidae). All stereoisomers of chalcogran and methyl 2,4-decadienoate. Journal of Chemical Ecology, 15, 685–695. DOI: 10.1007/bf01014711.

    Article  CAS  Google Scholar 

  • Chan, J. Y. C., Hough, L., & Richardson, A. C. (1985). The synthesis of (R)- and (S)-spirobi-1,4-dioxane and related spirobicycles from D-fructose. Journal of the Chemical Society, Perkin Transactions 1, 1985, 1457–1462. DOI: 10.1039/p19850001457.

    Article  Google Scholar 

  • Citron, C. A., Rabe, P., & Dickschat, J. S. (2012). The scent of bacteria: Headspace analysis for the discovery of natural products. Journal of Natural Products, 75, 1765–1776. DOI: 10.1021/np300468h.

    Article  CAS  Google Scholar 

  • Cubero, I. I., Plaza Lopez-Espinosa, M. T., & Kari, N. (1994). Synthesis of optically active chalcogran from l-sorbose. Carbohydrate Research, 261, 231–242. DOI: 10.1016/0008-6215(94)84020-2.

    Article  Google Scholar 

  • Enders, D., Dahmen, W., Dederichs, E., & Weuster, P. (1983). Spiroacetals from acetone and oxiranes — a simple route to optically active 1,6-dioxaspiro[4,4]nonane-pheromones. Synthetic Communications, 13, 1235–1242. DOI: 10.1080/00397918308063739.

    Article  CAS  Google Scholar 

  • Francke, W., Heemann, V., Gerken, B., Renwick, J. A. A., & Vité, J. P. (1977). 2-Ethyl-1,6-dioxaspiro[4,4]nonane, principal aggregation pheromone of Pityogenes chalcographus (L.). Naturwissenschaften, 64, 590–591. DOI: 10.1007/bf00450651.

    Article  CAS  Google Scholar 

  • Högberg, H. E., Hedenström, E., Isaksson, R., & Wassgren, A. B. (1987). Preparation of the four stereoisomers of chalcogran, pheromone components of Pityogenes chalcographus and of both enantiomers of γ-caprolactone, pheromone component of Trogoderma granarium. Acta Chemica Scandinavica B, 41, 694–697. DOI: 10.3891/acta.chem.scand.41b-0694.

    Article  Google Scholar 

  • Hungerbühler, E., Naef, R., Wasmuth, D., Seebach, D., Loosli, H. R., & Wehrli, A. (1980). Synthese optisch aktiver 2-Methyl- und 2-Äthyl-1,6-dioxaspiro[4.4]-nonan- und -[4.5]decan-Pheromone aus einem gemeinsamen chiralen Vorläufer. Helvetica Chimica Acta, 63, 1960–1970 DOI: 10.1002/hlca.19800630724.

    Article  Google Scholar 

  • Körblová, E., Koutek, B., Šaman, D., Svatoš, A., Maloň, P., & Romaňuk, M. (1990). Synthesis of optically active 1-(2-furyl)-3-pentanol. A simple route to (2S,5R/S)-chalcogran. Collection of Czechoslovak Chemical Communications, 55, 1234–1242. DOI: 10.1135/cccc19901234.

    Article  Google Scholar 

  • Mori, K., Sasaki, M., Tamada, S., Suguro, T., & Masuda, S. (1979). Synthesis of optically active 2-ethyl-1,6-dioxaspiro [4.4]nonane (chalcogran), the principal aggregation pheromone of Pityogenes chalcographus (L.). Tetrahedron, 35, 1601–1605. DOI: 10.1016/0040-4020(79)80022-8.

    Article  CAS  Google Scholar 

  • Redlich, H., & Francke, W. (1980). Optically active chalcogran (2-ethyl-1,6-dioxaspiro[4.4]nonane). Angewandte Chemie International Edition in English, 19, 630–631. DOI: 10.1002/anie.198006301.

    Article  Google Scholar 

  • Redlich, H. (1982). Chirale Bausteine aus Kohlenhydraten, VI. Synthese von (2R,5RS)- und (2S,5RS)-2-Ethyl-1,6-dioxaspiro-[4.4]nonan (Chalcogran) aus D-Glucose. Liebigs Annalen der Chemie, 1982, 708–716. DOI: 10.1002/jlac.198219820410.

    Article  Google Scholar 

  • Schurig, V., & Weber, R. (1984). Use of glass and fused-silica open tubular columns for the separation of structural, configurational and optical isomers by selective complexation gas chromatography. Journal of Chromatography A, 289, 321–332. DOI: 10.1016/s0021-9673(00)95097-0.

    Article  CAS  Google Scholar 

  • Smith, L. R., Williams, H. J., & Silverstein, R. M. (1978). Facile synthesis of optically active 2-ethyl-1,6-dioxaspiro[4,4]nonane, component of the aggregation pheromone of the beetle Pityogenes chalcographus (L.). Tetrahedron Letters, 19, 3231–3232. DOI: 10.1016/s0040-4039(01)85601-x.

    Article  Google Scholar 

  • Trapp, O., & Schurig, V. (2001). Determination of interconversion barriers by dynamic gas chromatography: Epimerization of chalcogran. Chemistry — A European Journal, 7, 1495–1502. DOI: 10.1002/1521-3765(20010401)7:7〈1495::AIDCHEM1495〉3.0.CO;2-M.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimír Mastihuba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mastihuba, V., Čepec, P., Vlčková, S. et al. Enzymatic synthesis of a chiral chalcogran intermediate. Chem. Pap. 68, 745–750 (2014). https://doi.org/10.2478/s11696-013-0523-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0523-5

Keywords

Navigation