Skip to main content
Log in

Kinetics and modelling of heptane steam-cracking

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The kinetics and product distribution during the cracking of heptane in the presence of steam were investigated. The experiments were performed in a flow reactor under atmospheric pressure in a temperature range of 680–760°C with a mass ratio of steam to heptane of 3: 1. The overall decomposition of heptane is represented by a first-order reaction with activation energy of 249.1 kJ mol−1 and a frequency factor of 3.13 × 1013 s−1. The reaction products were analysed using gas chromatography, the main product being ethylene. The molecular reaction scheme, which consists of a primary reaction and 24 secondary reactions between primary products, was used for modelling the experimental product yields. The yields of ethylene and hydrogen were in good agreement; however the experimental yields of propylene were higher than the predicted yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albright, L. F., & Tsai, T. C. (1983). Importance of surface reactions units. In L. F. Albright, B. L. Crynes, & W. H. Corcoran (Eds.), Pyrolysis: Theory and industrial practice (pp. 233–254). New York, NY, USA: Academic Press.

    Google Scholar 

  • Allara, D. L., & Shaw, R. (1980). A compilation of kinetic parameters for the thermal degradation of n-alkane molecules. Journal of Physical and Chemical Reference Data, 9, 523–560. DOI: 10.1063/1.555623.

    Article  CAS  Google Scholar 

  • Appleby, W. G., Aver, W. H., & Meerbott, W. K. (1947). Kinetics and mechanism of the thermal decomposition of n-heptane. Journal of the American Chemical Society, 69, 2279–2285. DOI: 10.1021/ja01202a012.

    Article  CAS  Google Scholar 

  • Aribike, D. S., & Susu, A. A. (1988a). Kinetics and mechanism of the thermal cracking of n-heptane. Thermochimica Acta, 127, 247–258. DOI: 10.1016/0040-6031(88)87501-4.

    Article  CAS  Google Scholar 

  • Aribike, D. S., & Susu, A. A. (1988b). Mechanistic modeling of the pyrolysis of n-heptane. Thermochimica Acta, 127, 259–273. DOI: 10.1016/0040-6031(88)87502-6.

    Article  CAS  Google Scholar 

  • Bajus, M., & Vesely, V. (1974). CS Patent No. 175812. Prague, Czechoslovakia: Czechoslovak Patent and Trademark Office.

  • Bajus, M., & Vesely, V. (1976). Hydrocarbon pyrolysis. I. Pyrolysis of individual n-alkanes. Ropa a Uhlie, 18, 126–135.

    Google Scholar 

  • Bajus, M., Vesely, V., Leclercq, P. A., & Rijks, J. A. (1979). Steam cracking of hydrocarbons. 1. Pyrolysis of heptane. Industrial & Engineering Chemistry Product Research and Development, 18, 30–37. DOI: 10.1021/i360069a007.

    Article  CAS  Google Scholar 

  • Bajus, M. (1989). Sulfur compounds in hydrocarbon pyrolysis. Sulfur reports, 9, 25–71. DOI: 10.1080/01961778908047982.

    Article  CAS  Google Scholar 

  • Berreni, M., & Wang, M. H. (2011). Modelling and dynamic optimization of thermal cracking of propane for ethylene manufacturing. Computers & Chemical Engineering, 35, 2876–2885. DOI: 10.1016/j.compchemeng.2011.05.010.

    Article  CAS  Google Scholar 

  • Bounaceur, R., Warth, V., Marquaire, P. M., Scacchi, G., Dominé, F., Dessort, D., & Brevart, O. (2002). Modeling of hydrocarbons pyrolysis at low temperature. Automatic generation of free radicals mechanisms. Journal of Analytical and Applied Pyrolysis, 64, 103–122. DOI: 10.1016/s0165-2370(01)00173-5.

    Article  CAS  Google Scholar 

  • Chakraborty, J. P., & Kunzru, D. (2009). High pressure pyrolysis of n-heptane. Journal of Analytical and Applied Pyrolysis, 86, 44–52. DOI: 10.1016/j.jaap.2009.04.001.

    Article  CAS  Google Scholar 

  • Chakraborty, J. P., & Kunzru, D. (2012). High-pressure pyrolysis of n-heptane: Effect of initiators. Journal of Analytical and Applied Pyrolysis, 95, 48–55. DOI:10.1016/j.jaap.2012. 01.004.

    Article  CAS  Google Scholar 

  • Dente, M. E., & Ranzi, E. M. (1983). Mathematical modeling of hydrocarbon pyrolysis reactions. In L. F. Albright, B. L. Crynes, & W. H. Corcoran (Eds.), Pyrolysis: Theory and industrial practice (pp. 133–175). New York, NY, USA: Academic Press.

    Google Scholar 

  • Ding, J. X., Zhang, L., & Han, K. L. (2011). Thermal rate constants of the pyrolysis of n-heptane. Combustion and Flame, 158, 2314–2324. DOI: 10.1016/j.combustflame.2011.04.015.

    Article  CAS  Google Scholar 

  • Ding, J. X., Zhang, L., Zhang, Y., & Han, K. (2013). A reactive molecular dynamics study of n-heptane pyrolysis at high temperature. The Journal of Physical Chemistry A, 117, 3266–3278. DOI: 10.1021/jp311498u.

    Article  CAS  Google Scholar 

  • Fabuss, B. M., Smith, J. O., & Satterfield, C. N. (1964). Thermal cracking of pure saturated hydrocarbons. In J. J. McKetta, Jr. (Ed.), Advances in petroleum chemistry and refining (Vol. 9, pp. 156–201). New York, NY, USA: Wiley.

    Google Scholar 

  • Hájeková, E., & Bajus, M. (2005). Recycling of low-density polyethylene and polypropylene via copyrolysis of polyalkene oil/waxes with naphtha: product distribution and coke formation. Journal of Analytical and Applied Pyrolysis, 74, 270–281. DOI: 10.1016/j.jaap.2004.11.016.

    Article  Google Scholar 

  • Hájeková, E., Mlynková, B., Bajus, M., & Špodová, L. (2007). Copyrolysis of naphtha with polyalkene cracking products; the influence of polyalkene mixtures composition on product distribution. Journal of Analytical and Applied Pyrolysis, 79, 196–204. DOI: 10.1016/j.jaap.2006.12.022.

    Article  Google Scholar 

  • Hougen, O. A., & Watson, K. M. (1947). Chemical process principles (Vol. 3). New York, NY, USA: Wiley.

    Google Scholar 

  • Jazayeri, S. M., & Karimzadeh, R. (2011). Experimental investigation of initial coke formation over stainless steel, chromium, and iron in thermal cracking of ethane with hydrogen sulfide as an additive. Energy & Fuels, 25, 4235–4247. DOI: 10.1021/ef2005173.

    Article  CAS  Google Scholar 

  • Kapur, S. (2005). ABB Lummus Global SRT® cracking technology for the production of ethylene. In R. A. Meyers (Ed.), Handbook of petrochemicals production processes (Chapter 6.1). New York, NY, USA: Mc Graw-Hill.

    Google Scholar 

  • Karaba, A., Zamostny, P., Lederer, J., & Belohlav, Z. (2013). Generalized model of hydrocarbons pyrolysis using automated reactions network generation. Industrial & Engineering Chemistry Research, 52, 15407–15416. DOI: 10.1021/ie4006657.

    Article  CAS  Google Scholar 

  • Katta, V. R., Aggarwal, S. K., & Roquemore, W. M. (2012). Evaluation of chemical-kinetics models for n-heptane combustion using a multidimensional CFD code. Fuel, 93, 339–350. DOI: 10.1016/j.fuel.2011.10.035.

    Article  CAS  Google Scholar 

  • Kopinke, F. D., Zimmermann, G., & Ondruschka, B. (1987). Tendencies of aromatization in steam cracking of hydrocarbons. Industrial & Engineering Chemistry Research, 26, 2393–2397. DOI: 10.1021/ie00071a037.

    Article  CAS  Google Scholar 

  • Kossiakoff, A., & Rice, F. O. (1943). Thermal decomposition of hydrocarbons, resonance stabilization and isomerization of free radicals. Journal of the American Chemical Society, 65, 590–595. DOI: 10.1021/ja01244a028.

    Article  CAS  Google Scholar 

  • Murata, M., Saito, S., Amano, A., & Maeda, S. (1973). Prediction of initial product distributions from pyrolysis of normal paraffinic hydrocarbons. Journal of Chemical Engineering of Japan, 6, 252–258. DOI: 10.1252/jcej.6.252.

    Article  CAS  Google Scholar 

  • Pant, K. K., & Kunzru, D. (1996). Pyrolysis of n-heptane: kinetics and modeling. Journal of Analytical and Applied Pyrolysis, 36, 103–120. DOI: 10.1016/0165-2370(95)00925-6.

    Article  CAS  Google Scholar 

  • Reid, R. C., Prausnitz, J. M., & Poling, B. E. (1988). The properties of gases and liquids (4th ed.). New York, NY, USA: McGraw-Hill.

    Google Scholar 

  • Reyniers, M. F. S. G., & Froment, G. F. (1995). Influence of metal surface and sulfur addition on coke deposition in the thermal cracking of hydrocarbons. Industrial & Engineering Chemistry Research, 34, 773–785. DOI: 10.1021/ie00042a009.

    Article  CAS  Google Scholar 

  • Rice, F. O., & Herzfeld, K. F. (1934). The thermal decomposition of organic compounds from the standpoint of free radicals. VI. The mechanism of some chain reactions. Journal of the American Chemical Society, 56, 284–289. DOI: 10.1021/ja01317a006.

    Article  CAS  Google Scholar 

  • Savage, P. E. (2000). Mechanisms and kinetics models for hydrocarbon pyrolysis. Journal of Analytical and Applied Pyrolysis, 54, 109–126. DOI: 10.1016/s0165-2370(99)00084-4.

    Article  CAS  Google Scholar 

  • Sundaram, K. M., & Froment, G. F. (1978). Modeling of thermal cracking kinetics. 3. Radical mechanisms for the pyrolysis of simple paraffins, olefins, and their mixtures. Industrial & Engineering Chemistry Fundamentals, 17, 174–182. DOI: 10.1021/i160067a006.

    Article  CAS  Google Scholar 

  • Yuan, T., Zhang, L. D., Zhou, Z. Y., Xie, M. F., Ye, L. L., & Qi, F. (2011). Pyrolysis of n-heptane: Experimental and theoretical study. The Journal of Physical Chemistry A, 115, 1593–1601. DOI: 10.1021/jp109640z.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natália Olahová.

Additional information

Dedicated to the memory of professor Elemír Kossaczký

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olahová, N., Bajus, M., Hájeková, E. et al. Kinetics and modelling of heptane steam-cracking. Chem. Pap. 68, 1678–1689 (2014). https://doi.org/10.2478/s11696-013-0518-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0518-2

Keywords

Navigation