Skip to main content
Log in

CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Cadmium sulfide/titanium dioxide (CdS/TiO2) composite films were grown on glass by the chemical bath deposition (DBQ) and sol-gel/dip coating methods, respectively, in order to increase the photocatalytic activity of TiO2 in photodegradation processes. The influence of the CdS deposition time on the morphology, optical absorption, and phononic modes of the composites were examined. Scanning electron microscopy (SEM) images showed clearly the CdS deposit on the TiO2 surface. The absorbance spectra indicated that the absorption of composites depends on the CdS deposition time and the absorption edges are shifted to the visible range. Micro Raman spectra exhibited the phonons associated with the TiO2 anatase and the longitudinal optic (LO) phonon of CdS whose intensity increases with the CdS deposition time. Photodegradation of methylene blue (MB) under visible light irradiation was observed in all films and the results were compared with those obtained with TiO2 films. The decomposition is higher for the composite with the CdS deposition time of 15 min. This optimal deposition time allows maximal enhancement of the charge carriers transfer to TiO2 involved in the photocatalysis. No signal associated with cadmium was detected by the atomic absorption spectroscopy (AAS), which means that the CdS photocorrosion does not occur since trap centers such as OH-Cd-S and Cl, which trap holes and inhibit the photocorrosion, are produced during the growth process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amador Grajeda, S., Gómez, E., Hernández-Torres, M. E., Gracia-Jiménez, J. M., & Silva-González, R. (2001). CdSe characterization by energy dispersive spectroscopy and the photoconductivity technique. Modern Physics Letters B, 15, 630–633. DOI: 10.1142/s0217984901002166.

    Article  CAS  Google Scholar 

  • Arguello, C. A., Rousseau, D. L., & Porto, S. P. S. (1969). First-order Raman effect in wurtzite-type crystals. Physical Review, 181, 1351–1363. DOI: 10.1103/PhysRev.181.1351.

    Article  CAS  Google Scholar 

  • Biswas, S., Hossain, M. F., Takahashi, T., Kubota, Y., & Fujishima, A. (2008). Influence of Cd/S ratio on photocatalytic activity of high-vacuum-annealed CdS-TiO2 thin film. Physica Status Solidi (A), 205, 2028–2032. DOI: 10.1002/pssa.200778934.

    Article  CAS  Google Scholar 

  • Bockmeyer, M., & Löbmann, P. (2007). Crack formation in TiO2 films prepared by sol-gel processing: Quantification and characterization. Thin Solid Films, 515, 5212–5219. DOI: 10.1016/j.tsf.200611.193.

    Article  CAS  Google Scholar 

  • Byrappa, K., Subramani, A. K., Ananda, S., Lokanatha Rai, K. M., Dinesh, R., & Yoshimura, M. (2006). Photocatalytic degradation of rhodamine B dye using hidrothermally synthesized ZnO. Bulletin of Materials Science, 29, 433–438. DOI: 10.1007/bf02914073.

    Article  CAS  Google Scholar 

  • Choi, J. N., Park, H. W., & Hoffman, M. R. (2010). Combinatorial doping of TiO2 with platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni) to achieve enhanced photocatalytic activity with visible light irradiation. Journal of Materials Research, 25, 149–158. DOI: 10.1557/jmr.2010.0024.

    Article  CAS  Google Scholar 

  • Davis, A. P., & Huang, C. P. (1990). The removal of substituted phenols by a photocatalytic oxidation process with cadmium sulfide. Water Research, 24, 543–550. DOI: 10.1016/0043-1354(90)90185-9.

    Article  CAS  Google Scholar 

  • Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93, 341–357. DOI: 10.1021/cr00017a016.

    Article  CAS  Google Scholar 

  • Fröhlich, K., Ťapajna, M., Rosová, A., Dobročka, E., Hušekov, K., Aarik, J., & Aidla, A. (2008). Growth of high-dielectricconstant TiO2 films in capacitors with RuO2 electrodes. Electrochemical and Solid-State Letters, 11(6), G19–G21. DOI: 10.1149/1.2898184.

    Article  Google Scholar 

  • Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37–38. DOI: 10.1038/238037a0.

    Article  CAS  Google Scholar 

  • Gopidas, K. R., Bohorquez, M., & Kamat, P. V. (1990). Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal CdS-TiO2 and CdS-AgI systems. The Journal of Physical Chemistry, 94, 6435–6440. DOI: 10.1021/j100379a051.

    Article  CAS  Google Scholar 

  • Haro-Poniatowski, E., Rodríguez-Talavera, R., de la Cruz, H. M., Cano-Corona, O., & Arroyo-Murillo, R. (1994). Crystallization of nanosized titania particles prepared by the sol-gel process. Journal of Materials Research, 9, 2102–2108. DOI: 10.1557/jmr.1994.2102.

    Article  CAS  Google Scholar 

  • Hernández-Torres, M. E. (2006), Study of cadmium selenide grown by chemical bath deposition: growth and characterization. PhD. thesis, Benemérita Universidad Autónoma de Puebla, Puebla, PUE, México.

    Google Scholar 

  • Hossain, M. F., Biswas, S., Takahashi, T., Kubota, Y., & Fujishima, A. (2008). Effect of substrate temperature on the photocatalytic activity of sputtered TiO2 thin film. Physica Status Solidi (A), 205, 2018–2022. DOI: 10.1002/pssa.200778892.

    Article  CAS  Google Scholar 

  • Kamat, P. V., Dimitrijević, N. M., & Fessenden, R. W. (1987). Photoelectrochemistry in particulate systems. 6. Electrontransfer reactions of small CdS colloids in acetonitrile. The Journal of Physical Chemistry, 91, 396–401. DOI: 10.1021/j100286a029.

    Article  CAS  Google Scholar 

  • Kikandi, S., Brito, J., & Sadik, O. A. (2007). Electroless deposition of TiO2/Ti onto aluminum substrates. Journal of the Electrochemical Society, 154, D346–D353. DOI: 10.1149/1.2734100.

    Article  CAS  Google Scholar 

  • Kittel, C. (2005). Introduction to solid state physics (8th ed.). Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Liu, G., Sun, C. H., Cheng, L. N., Jin, Y. G., Lu, H. F., Wang, L. Z., Smith, S. C., Lu, G. Q., & Cheng, H. M. (2009). Efficient promotion of anatase TiO2 photocatalysis via bifunctional surface-terminating Ti-O-B-N structures. The Journal of Physical Chemistry C, 113, 12317–12324. DOI: 10.1021/jp900511u.

    Article  CAS  Google Scholar 

  • Mane, R. S., Roh, S. J., Joo, O. S., Lonkhande, C. D., & Han, S. H. (2005). Improved performance of dense TiO2/CdSe coupled thin films by low temperature process. Electrochimica Acta, 50, 2453–2459. DOI: 10.1016/j.electacta.2004.10.075.

    Article  CAS  Google Scholar 

  • Meissner, D., Memming, R., & Kastening, B. (1988). Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential. The Journal of Physical Chemistry, 92, 3476–3483. DOI: 10.1021/j100323a032.

    Article  CAS  Google Scholar 

  • Nasr, C., Vinodgopal, K., Fisher, L., Hotchandani, S., Chattopadhyay, A. K., & Kamat, P. V. (1996). Environmental photochemistry on semiconductor surfaces. Visible light induced degradation of a textile diazo dye, naphthol blue black, on TiO2 nanoparticles. The Journal of Physical Chemistry, 100, 8436–8442. DOI: 10.1021/jp953556v.

    Article  CAS  Google Scholar 

  • Ohno, T., Mitsui, T., & Matsumura, M. (2003). Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chemistry Letters, 32, 364–365. DOI: 10.1246/cl.2003.364.

    Article  CAS  Google Scholar 

  • Özsan, M. E., Johnson, D. R., Sadeghi, M., Sivapathasundaram, D., Peter, L. M., Furlong, M. J., Goodlet, G., Shingleton, A., Lincot, D., Mokili, B., & Vedel, J. (1994). Optical and electrical characterization of chemically deposited cadmium sulfide thin films. In Proceedings of 1994 IEEE First World Conference on Photovoltaic Energy Conversion, December 5–9, 1994 (pp. 327–330). New York, NY, USA: Institute of Electrical and Electronics Engineers. DOI: 10.1109/wcpec.1994.519874.

    Google Scholar 

  • Park, N. G., & Kim, K. K. (2008). Transparent solar cells based on dye-sensitized nanocrystalline semiconductors. Physica Status Solidi (A), 205, 1895–1904. DOI: 10.1002/pssa.200778938.

    Article  CAS  Google Scholar 

  • Pulido Melián, E., González Díaz, O., Doña Rodríguez, J. M., Colón, G., Navío, J. A., & Pérez Peña, J. (2012). Effect of hydrothermal treatment on structural and photocatalytic properties of TiO2 synthesized by sol-gel method. Applied Catalysis A: General, 411–412, 153–159. DOI: 10.1016/j.apcata.2011.10.033.

    Article  Google Scholar 

  • Ren, D. S., & Zhang, Z. J. (2006). Crystal structure and photocatalytic characteristics of nanoscale Sb-doped TiO2 thin films. Chinese Journal of Chemical Physics, 19, 549–554. DOI: 10.1360/cjcp2006.19(6).549.6.

    Article  CAS  Google Scholar 

  • Ryu, S. Y., Choi, J. N., Balcerski, W., Lee, T. K., & Hoffman, M. R. (2007). Photocatalytic production of H2 on nanocomposite catalysts. Industrial & Engineering Chemistry Research, 46, 7476–7488. DOI: 10.1021/ie0703033.

    Article  CAS  Google Scholar 

  • Saritha, P., Aparna, C., Himabindu, V., & Anjaneyulu, Y. (2007). Comparison of various advanced oxidation processes for the degradation of 4-chloro-2-nitrophenol. Journal of Hazardous Materials, 149, 609–614. DOI: 10.1016/j.jhazmat.2007.06.111.

    Article  CAS  Google Scholar 

  • Shirai, K., Moriguchi, Y., Ichimura, M., Usami, A., & Saji, M. (1996). Relationship between Raman spectra and crystallinity of CdS films grown by cathodic electrodeposition. Japanese Journal of Applied Physics, 35, 2057–2060. DOI: 10.1143/jjap.35.2057.

    Article  CAS  Google Scholar 

  • Spanhel, L., Weller, H., & Henglein, A. (1987). Photochemistry of semiconductor colloids. 22. Electron injection from illuminated CdS into attached TiO2 and ZnO particles. Journal of the American Chemical Society, 109, 6632–6635. DOI: 10.1021/ja00256a012.

    Article  CAS  Google Scholar 

  • Tan, J., Wlodarski, W., & Kalantar-Zadeh, K. (2007). Nitrogen dioxide gas sensors based on titanium dioxide thin films deposited on langasite. Thin Solid Films, 515, 8738–8743. DOI: 10.1016/j.tsf.2007.04.008.

    Article  CAS  Google Scholar 

  • Tang, H., Prasad, K., Sanjinès, R., Schmid, P. E., & Lévy, F. (1994). Electrical and optical properties of TiO2 anatase thin films. Journal of Applied Physics, 75, 2042–2047. DOI: 10.1063/1.356306.

    Article  CAS  Google Scholar 

  • Tang, W. Z., & Huang, C. P. (1995). Photocatalyzed oxidation pathways of 2,4-dichlorophenol by CdS in basic and acidic aqueous solutions. Water Research, 29, 745–756. DOI: 10.1016/0043-1354(94)00151-v.

    Article  CAS  Google Scholar 

  • Vinodgopal, K., Wynkoop, D. E., & Kamat, P. V. (1996). Environmental photochemistry on semiconductor surfaces: Photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light. Environmental Science & Technology, 30, 1660–1666. DOI: 10.1021/es950655d.

    Article  CAS  Google Scholar 

  • Wu, N. Q., Wang, J., Tafen, D. N., Wang, H., Zheng, J. G., Lewis, J. P., Liu, X. G., Leonard, S. S., & Manivannan, A. (2010). Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. Journal of the American Chemical Society, 132, 6679–6685. DOI: 10.1021/ja909456f.

    Article  CAS  Google Scholar 

  • Xiao, Q., Si, Z. C., Zhang, J., Xiao, C., Yu, Z. M., & Qiu, G. Z. (2007). Effects of samarium dopant on photocatalytic activity of TiO2 nanocrystallite for methylene blue degradation. Journal of Materials Science, 42, 9194–9199. DOI: 10.1007/s10853-007-1919-9.

    Article  CAS  Google Scholar 

  • Xu, N. P., Shi, Z. F., Fan, Y. Q., Dong, J. H., Shi, J., & Hu, M. Z. C. (1999). Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions. Industrial & Engineering Chemistry Research, 38, 373–379. DOI: 10.1021/ie980378u.

    Article  CAS  Google Scholar 

  • Yan, X. X., Liu, G., Wang, L. Z., Wang, Y., Zhu, X. F., Zou, J., & Lu, G. Q. (2010). Antiphotocorrosive photocatalysts containing CdS nanoparticles and exfoliated TiO2 nanosheets. Journal of Materials Research, 25, 182–188. DOI: 10.1557/jmr.2010.0007.

    Article  CAS  Google Scholar 

  • Yang, S.W., & Gao, L. (2004). New method to prepare nitrogendoped titanium dioxide and its photocatalytic activities irradiated by visible light. Journal of the American Ceramic Society, 87, 1803–1805. DOI: 10.1111/j1551-2916.2004.01803.x.

    Article  CAS  Google Scholar 

  • Yang, G. D., Yang, B. L., Xiao, T. C., & Yan, Z. F. (2013a). Onestep solvothermal synthesis of hierarchically porous nanostructured CdS/TiO2 heterojunction with higher visible light photocatalytic activity. Applied Surface Science, 283, 402–410. DOI: 10.1016/j.apsusc.2013.06.122.

    Article  CAS  Google Scholar 

  • Yang, G. D., Yan, Z. F., Xiao, T. C., & Yang, B. L. (2013b). Low-temperature synthesis of alkalis doped TiO2 photocatalysis and their photocatalytic performance for degradation of methyl orange. Journal of Alloys and Compounds, 580, 15–22. DOI: 10.1016/j.jallcom.2013.05.074.

    Article  CAS  Google Scholar 

  • Yasumori, A., Ishizu, K., Hayashi, S., & Okada, K. (1998). Preparation of a TiO2 based multiple layer thin films photocatalyst. Journal of Materials Chemistry, 8, 2521–2524. DOI: 10.1039/a803265c.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Elena Hernández-Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández-Torres, M.E., Ojeda-Carrera, M.T., Sánchez-Cantú, M. et al. CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide. Chem. Pap. 68, 1257–1264 (2014). https://doi.org/10.2478/s11696-013-0514-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0514-6

Keywords

Navigation