Skip to main content
Log in

Michael addition of phenylacetonitrile to the acrylonitrile group leading to diphenylpentanedinitrile. Structural data and theoretical calculations

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Knoevenagel condensation of phenylacetonitrile with 4-diphenylaminophenylacetonitrile in the presence of piperidine was carried out to obtain a novel conjugated compound. In addition to the expected compound 2-(phenyl)-3-(4-diphenylaminophenyl)acrylonitrile (I), the 3-((4-diphenylamino)phenyl)-2,4-diphenylpentanedinitrile (II) was also obtained with a good yield. Compound II was obtained as a result of the Michael addition of phenylacetonitrile with 2-(phenyl)-3-(4-diphenylaminophenyl)acrylonitrile (I). Conversely, when the same reaction was performed in the presence of KOH as catalyst, only the α,β-unsaturated nitrile (I) was afforded with a 92 % yield. The structures were confirmed with IR, EI-MS and NMR spectroscopy. Single crystals I and II were formed and their structures were determined by X-ray single-crystal diffraction analysis. Crystal I belongs to the monoclinic system with space group P21/n having unit cell parameters of a = 16.8589(5) Å, b = 6.68223(17) Å, c = 19.8289(7) Å, β = 111.133(4)○ and Z = 4. Crystal II belongs to the same monoclinic system with space group P21/c, having unit cell parameters of a = 10.8597(4) Å, b = 24.7533(10) Å, c = 9.7832(4) Å, β = 91.297(3)○ and Z = 4. In addition to the structural data analysis, some theoretical calculations that reveal the nature of relevant structure-property relationships are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., & Taylor, R. (1987). Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. Journal of the Chemical Society, Perkin Transactions 2, 1987, S1–S19. DOI: 10.1039/p298700000s1.

    Google Scholar 

  • Augé, J., Lubin, N., & Lubineau, A. (1994). Acceleration in water of the Baylis-Hillman reaction. Tetrahedron Letters, 35, 7947–7948. DOI: 10.1016/0040-4039(94)80018-9.

    Google Scholar 

  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913.

    Article  CAS  Google Scholar 

  • Bellamy, L. J. (1975). The infra-red spectra of complex molecules. New York, NY, USA: Wiley.

    Book  Google Scholar 

  • Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. The Journal of Chemical Physics, 54, 724–728. DOI: 10.1063/1.1674902.

    Article  CAS  Google Scholar 

  • D’Sa, B. A., Kisanga, P., & Verkade, J. G. (1998). Direct synthesis of α,β-unsaturated nitriles catalyzed by nonionic superbases. The Journal of Organic Chemistry, 63, 3961–3967. DOI: 10.1021/jo972343u.

    Article  Google Scholar 

  • Fraysse, M. J. (1980). Nitriles: their application in perfumery. Perfumer & Flavorist, 4, 11–12.

    CAS  Google Scholar 

  • Fringuelli, F., Pani, G., Piermatti, O., & Pizzo, F. (1994). Condensation reactions in water of active methylene compounds with arylaldehydes. One-pot synthesis of flavonols. Tetrahedron, 50, 11499–11508. DOI: 10.1016/s0040-4020(01)89287-5.

    CAS  Google Scholar 

  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2009). Gaussian 09 Revision A.1 [computer software]. Wallingford, CT, USA: Gaussian.

    Google Scholar 

  • Frost, H. V. (1889). Ueber die Condensation von Benzylcyanid und seinen Substitutionsproducten mit Aldehyden und mit Amylnitrit. Justus Liebigs Annalen der Chemie, 250, 156–166. DOI: 10.1002/jlac.18892500106. (in German)

    Article  Google Scholar 

  • Guillemin, J. C., Breneman, C. M., Joseph, J. C., & Ferris, J. P. (1998). Regioselectivity of the photochemical addition of ammonia, phosphine, and silane to olefinic and acetylenic nitriles. Chemistry — A European Journal, 4, 1074–1082. DOI: 10.1002/(sici)1521-3765(19980615)4:6〈1074::aid-chem1074〉3.0.co;2-b.

    Article  CAS  Google Scholar 

  • Guillot, R., Loupy, A., Meddour, A., Pellet, M., & Petit, A. (2005). Solvent-free condensation of arylacetonitrile with aldehydes. Tetrahedron, 61, 10129–10137. DOI: 10.1016/j.tet.2005.07.040.

    Article  CAS  Google Scholar 

  • Improta, R., & Santoro, F. (2005). Excited-state behavior of trans and cis isomers of stilbene and stiff stilbene: A TD-DFT study. The Journal of Physical Chemistry A, 109, 10058–10067. DOI: 10.1021/jp054250j.

    Article  CAS  Google Scholar 

  • Jenner, G. (1996). Comparative study of physical and chemical activation modes. The case of the synthesis of β-amino derivatives. Tetrahedron, 52, 13557–13568. DOI: 10.1016/0040-4020(96)00831-9.

    CAS  Google Scholar 

  • Knoevenagel, E. (1896). Ueber eine Darstellungsweise des Benzylidenacetessigesters. Berichte der Deutschen Chemischen Gesellschaft, 29, 172–174. DOI: 10.1002/cber.18960290133. (in German)

    Article  CAS  Google Scholar 

  • Lin, R., Horng, H. C., Lin, H.M., Lin, S. Y., Hon, Y. S., & Chow, T. J. (2010). 2-Amino-3-naphthylacrylonitrile derivatives as green luminance dyes. Journal of the Chinese Chemical Society, 57, 805–810.

    Article  CAS  Google Scholar 

  • Lorente, A., Galan, C., Fonseca, I., & Sanz-Aparicio, J. (1995). 1-Aminocyclohexene-2,4-dicarbonitrile derivatives. Syntheses and structural study. Canadian Journal of Chemistry, 73, 1546–1555. DOI: 10.1139/v95-192.

    CAS  Google Scholar 

  • Loupy, A., Pellet, M., Petit, A., & Vo-Thanh, G. (2005). Solvent-free condensation of phenylacetonitrile and nonanenitrile with 4-methoxybenzaldehyde: Optimization and mechanistic studies. Organic & Biomolecular Chemistry, 3, 1534–1540. DOI: 10.1039/b418156e.

    Article  CAS  Google Scholar 

  • Lubineau, A., & Augé, J. (1999). Water as solvent in organic synthesis. In P. Knochel (Ed.), Modern solvents in organic synthesis (pp. 1–39). Berlin, Germany: Springer. DOI: 10.1007/3-540-48664-x 1.

    Chapter  Google Scholar 

  • Mabrouk, A., Azazi, A., & Alimi, K. (2010). On the properties of new benzothiazole derivatives for organic light emitting diodes (OLEDs): A comprehensive theoretical study. Journal of Physics and Chemistry of Solids, 71, 1225–1235. DOI: 10.1016/j.jpcs.2010.04.020.

    Article  CAS  Google Scholar 

  • Michel, F., Mecklein, L., Crastes de Paulet, A., Doré, J. C., Gilbert, J., & Miquel, J. F. (1984). The effect of various acrylonitriles and related compounds on prostaglandin biosynthesis. Prostaglandins, 27, 69–84. DOI: 10.1016/0090-6980(84)90221-1.

    Article  CAS  Google Scholar 

  • Mori, K. (1976). Synthetic chemistry of insect pheromones and juvenile hormones (Recent developments in the chemistry of natural carbon compounds). Budapest, Hungary: Akadémiai Kiadó.

    Google Scholar 

  • Nakanishi, K., & Solomon, P. H. (1977). Infrared absorption spectroscopy. Oakland, CA, USA: Holden-Day.

    Google Scholar 

  • Peat, J. R., Minchin, F. R., Jeffcoat, B., & Summerfield, R. J. (1981). Young reproductive structures promote nitrogen fixation in soya bean. Annals of Botany, 48, 177–182.

    CAS  Google Scholar 

  • Percino, M. J., Chapela, V. M., Montiel, L. F., Pérez-Gutiérrez, E., & Maldonado, J. L. (2010). Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent. Chemical Papers, 64, 360–367. DOI: 10.2478/s11696-010-0012-z.

    Article  CAS  Google Scholar 

  • Percino, M. J., Chapela, V. M., Pérez-Gutiérrez, E., Cerón, M., & Soriano, G. (2011). Synthesis, optical and spectroscopic characterisation of substituted 3-phenyl-2-arylacrylonitriles Chemical Papers, 65, 42–51. DOI: 10.2478/s11696-010-0075-x.

    Article  CAS  Google Scholar 

  • Percino, M. J., Chapela, V. M., Cerón, M., Castro, M. E., Soriano-Moro, G., Pérez-Gutiérrez, E., & Meléndez-Bustamante, F. (2012). Synthesis and characterization of conjugated pyridine-(N-diphenylamino) acrylonitrile derivatives: Photophysical properties. Journal of Materials Science Research, 1, 181–192. DOI: 10.5539/jmsr.v1n2p181.

    Article  CAS  Google Scholar 

  • Pérez-Gutiérrez, E., Percino, M. J., Chapela, V. M., Cerón, M., Maldonado, J. L., & Ramos-Ortiz, G. (2011). Synthesis, characterization and photophysical properties of pyridinecarbazole acrylonitrile derivatives. Materials, 4, 562–574. DOI: 10.3390/ma4030562.

    Article  Google Scholar 

  • Saidalimu, I., Fang, X., Lv, W. W., Yang, X. Y., He, X. P., Zhang, J. Y., Wu, F. H., & Pizzo, F. (2013). Organocatalytic asymmetric Michael addition/carbon-carbon bond cleavage of trifluoromethyl α-fluorinated gem-diols to nitroolefins. Advanced Synthesis & Catalysis, 355, 857–863. DOI: 10.1002/adsc.201200757.

    Article  CAS  Google Scholar 

  • Sağirli, A., Dürüst, Y., Kariuki, B., & Knight, D. W. (2013). A practical isocyanide-based multicomponent synthesis of polysubstituted cyclopentenes. Tetrahedron, 69, 69–72. DOI: 10.1016/j.tet.2012.10.065.

    Article  Google Scholar 

  • Sheldrick, G. M. (1998). SHELXL 97 [computer software]. Göttingen, Germany: University of Göttingen.

    Google Scholar 

  • The Cambridge Crystallographic Data Centre (2012). Mercury 3.0 [computer software]. Cambridge, UK: The Cambridge Crystallographic Data Centre.

    Google Scholar 

  • Williams, D. H., & Fleming, I. (1980). Spectroscopic methods in organic chemistry (3rd ed.). London, UK: MacGraw-Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Judith Percino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Percino, M.J., Cerón, M., Castro, M.E. et al. Michael addition of phenylacetonitrile to the acrylonitrile group leading to diphenylpentanedinitrile. Structural data and theoretical calculations. Chem. Pap. 68, 668–680 (2014). https://doi.org/10.2478/s11696-013-0503-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0503-9

Keywords

Navigation