Skip to main content

Advertisement

Log in

QSAR modeling of aromatase inhibition by flavonoids using machine learning approaches

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Aromatase is a member of the cytochrome P450 family responsible for catalyzing the rate-limiting conversion of androgens to estrogens. In the pursuit of robust aromatase inhibitors, quantitative structure-activity relationship (QSAR) and classification structure-activity relationship (CSAR) studies were performed on a non-redundant set of 63 flavonoids using multiple linear regression, artificial neural network, support vector machine and decision tree approaches. Easy-to-interpret descriptors providing comprehensive coverage on general characteristics of molecules (i.e., molecular size, flexibility, polarity, solubility, charge and electronic properties) were employed to describe the unique physicochemical properties of the investigated flavonoids. QSAR models provided good predictive performance as observed from their statistical parameters with Q values in the range of 0.8014 and 0.9870 for the cross-validation set and Q values in the range of 0.8966 and 0.9943 for the external test set. Furthermore, CSAR models developed with the J48 algorithm are able to accurately classify flavonoids as active and inactive as observed from the percentage of correctly classified instances in the range of 84.6 % and 100 %. The study presented herein represents the first large-scale QSAR study of aromatase inhibition on a large set of flavonoids. Such investigations provide an important insight on the origins of aromatase inhibitory properties of flavonoids as breast cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brueggemeier, R. W., Gu, X. J., Mobley, J. A., Joomprabutra, S., Bhat, A. S., & Whetstone, J. L. (2001). Effects of phytoestrogens and synthetic combinatorial libraries on aromatase, estrogen biosynthesis, and metabolism. Annals of the New York Academy of Sciences, 948, 51–66. DOI: 10.1111/j.1749-6632.2001.tb03986.x.

    Article  CAS  Google Scholar 

  • Brueggemeier, R. W., Hackett, J. C., & Diaz-Cruz, E. S. (2005). Aromatase inhibitors in the treatment of breast cancer. Endocrine Reviews, 26, 331–345. DOI: 10.1210/er.2004-0015.

    Article  CAS  Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector network. Machine Learning, 20, 273–297. DOI: 10.1007/bf00994018.

    Google Scholar 

  • Dutta, U., & Pant, K. (2008). Aromatase inhibitors: past, present and future in breast cancer therapy. Medical Oncology, 25, 113–124. DOI: 10.1007/s12032-007-9019-x.

    Article  CAS  Google Scholar 

  • Frank, E., Hall, M., Trigg, L., Holmes, G., & Witten, I. H. (2004). Data mining in bioinformatics using Weka. Bioinformatics, 20, 2479–2481. DOI: 10.1093/bioinformatics/bth261.

    Article  CAS  Google Scholar 

  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2009). Gaussian 09, Revision A.1 [computer software]. Wallingford, Connecticut, USA: Gaussian.

    Google Scholar 

  • Gobbi, S., Cavalli, A., Rampa, A., Belluti, F., Piazzi, L., Paluszcak, A., Hartmann, R. W., Recanatini, M., & Bisi, A. (2006). Lead optimization providing a series of flavone derivatives as potent nonsteroidal inhibitors of the cytochrome P450 aromatase enzyme. Journal of Medicinal Chemistry, 49, 4777–4780. DOI: 10.1021/jm060186y.

    Article  CAS  Google Scholar 

  • Isarankura-Na-Ayudhya, C., Nantasenamat, C., Buraparuangsang, P., Piacham, T., Ye, L., Bülow, L., & Prachayasittikul, V. (2008). Computational insights on sulfonamide imprinted polymers. Molecules, 13, 3077–3091. DOI: 10.3390/molecules13123077.

    Article  CAS  Google Scholar 

  • Jalali-Heravi, M., & Parastar, F. (2000). Use of artificial neural networks in a QSAR study of anti-HIV activity for a large group of HEPT derivatives. Journal of Chemical Information and Computer Sciences, 40, 147–154. DOI: 10.1021/ci990314+.

    CAS  Google Scholar 

  • Kao, Y. C., Zhou, C. B., Sherman, M., Laughton, C. A., & Chen, S. (1998). Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study. Environmental Health Perspectives, 106, 85–92. DOI: 10.1289/ehp.9810 685.

    Article  CAS  Google Scholar 

  • Le Bail, J. C., Pouget, C., Fagnere, C., Basly, J. P., Chulia, A. J., & Habrioux, G. (2001). Chalcones are potent inhibitors of aromatase and 17β-hydroxysteroid dehydrogenase activities. Life Sciences, 68, 751–761. DOI: 10.1016/s0024-3205(00)00974-7.

    Article  Google Scholar 

  • Liu, M. M., Huang, Y., & Wang, J. (2012). Developing phytoestrogens for breast cancer prevention. Anti-Cancer Agents in Medicinal Chemistry, 12, 1306–1313. DOI: 10.2174/187152012803833062.

    Article  CAS  Google Scholar 

  • Mandi, P., Nantasenamat, C., Srungboonmee, K., Isarankura-Na-Ayudhya, C., & Prachayasittikul, V. (2012). QSAR study of anti-prion activity of 2-aminothiazoles. EXCLI Journal, 11, 453–467.

    Google Scholar 

  • Mohammed, H. A., Ba, L. A., Burkholz, T., Schumann, E., Diesel, B., Zapp, J., Kiemer, A. K., Ries, C., Hartmann, R. W., Hosny, M., & Jacob, C. (2011). Facile synthesis of chrysin-derivatives with promising activities as aromatase inhibitors. Natural Product Communications, 6, 31–34.

    CAS  Google Scholar 

  • Monteiro, R., Becker, H., Azevedo, I., & Calhau, C. (2006). Effect of hop (Humulus lupulus L.) flavonoids on aromatase (estrogen synthase) activity. Journal of Agricultural and Food Chemistry, 54, 2938–2943. DOI: 10.1021/jf053162t.

    Article  CAS  Google Scholar 

  • Mullen, L. M. A., Duchowicz, P. R., & Castro, E. A. (2011). QSAR treatment on a new class of triphenylmethylcontaining compounds as potent anticancer agents. Chemo metrics and Intelligent Laboratory Systems, 107, 269–275. DOI: 10.1016/j.chemolab.2011.04.011.

    Article  CAS  Google Scholar 

  • Nabholtz, J. M., Mouret-Reynier, M. A., Durando, X., Van Praagh, I., Al-Sukhun, S., Ferriere, J. P., & Chollet, P. (2009). Comparative review of anastrozole, letrozole and exemestane in the management of early breast cancer. Expert Opinion on Pharmacotherapy, 10, 1435–1447. DOI: 10.1517/14656560902953738.

    Article  CAS  Google Scholar 

  • Nagar, S., Islam, M. A., Das, S., Mukherjee, A., & Saha, A. (2008). Pharmacophore mapping of flavone derivatives for aromatase inhibition. Molecular Diversity, 12, 65–76. DOI: 10.1007/s11030-008-9077-9.

    Article  CAS  Google Scholar 

  • Nantasenamat, C., Naenna, T., Isarankura-Na-Ayudhya, C., & Prachayasittikul, V. (2005). Quantitative prediction of imprinting factor of molecularly imprinted polymers by artificial neural network. Journal of Computer-Aided Molecular Design, 19, 509–524. DOI 10.1007/s10822-005-9004-4.

    Article  CAS  Google Scholar 

  • Nantasenamat, C., Isarankura-Na-Ayudhya, C., Naenna, T., & Prachayasittikul, V. (2007a). Quantitative structureimprinting factor relationship of molecularly imprinted polymers. Biosensors and Bioelectronics, 22, 3309–3317. DOI: 10.1016/j.bios.2007.01.017.

    Article  CAS  Google Scholar 

  • Nantasenamat, C., Isarankura-Na-Ayudhya, C., Tansila, N., Naenna, T., & Prachayasittikul, V. (2007b). Prediction of GFP spectral properties using artificial neural network. Journal of Computational Chemistry, 28, 1275–1289. DOI: 10.1002/jcc.20656.

    Article  CAS  Google Scholar 

  • Nantasenamat, C., Isarankura-Na-Ayudhya, C., Naenna, T., & Prachayasittikul, V. (2008). Prediction of bond dissociation enthalpy of antioxidant phenols by support vector machine. Journal of Molecular Graphics and Modelling, 27, 188–196. DOI: 10.1016/j.jmgm.2008.04.005.

    Article  CAS  Google Scholar 

  • Nantasenamat, C., Isarankura-Na-Ayudhya, C., Naenna, T., & Prachayasittikul, V. (2009). A practical overview of quantitative structure-activity relationship. EXCLI Journal, 8, 74–88.

    Google Scholar 

  • Nantasenamat, C., Isarankura-Na-Ayudhya, C., & Prachayasittikul, V. (2010). Advances in computational methods to predict the biological activity of compounds. Expert Opinion on Drug Discovery, 5, 633–654. DOI: 10.1517/17460441.2010.492827.

    Article  CAS  Google Scholar 

  • Nantasenamat, C., Li, H., Isarankura-Na-Ayudhya, C., & Prachayasittikul, V. (2012). Exploring the physicochemical properties of templates from molecular imprinting literature using interactive text mining approach. Chemometrics and Intelligent Laboratory Systems, 116, 128–136. DOI: 10.1016/j.chemolab.2012.05.006.

    Article  CAS  Google Scholar 

  • Nantasenamat, C., Srungboonmee, K., Jamsak, S., Tansila, N., Isarankura-Na-Ayudhya, C., & Prachayasittikul, V. (2013a). Quantitative structure-property relationship study of spectral properties of green fluorescent protein with support vector machine. Chemometrics and Intelligent Laboratory Systems, 120, 42–52. DOI: 10.1016/j.chemolab.2012.11.003.

    Article  CAS  Google Scholar 

  • Nantasenamat, C., Li, H., Mandi, P., Worachartcheewan, A., Monnor, T., Isarankura-Na-Ayudhya, C., & Prachayasittikul, V. (2013b). Exploring the chemical space of aromatase inhibitors. Molecular Diversity. DOI: 10.1007/s11030-013-9462-x.

    Google Scholar 

  • Narayana, B. L., Kishore, D. P., Balakumar, C., Rao, K. V., Kaur, R., Rao, A. R., Murthy, J. N., & Ravikumar, M. (2012). Molecular modeling evaluation of non-steroidal aromatase inhibitors. Chemical Biology & Drug Design, 79, 674–682. DOI: 10.1111/j.1747-0285.2011.01277.x.

    Article  CAS  Google Scholar 

  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. DOI: 10.1186/1758-2946-3-33.

    Article  Google Scholar 

  • OpenEye Scientific Software (2013). VIDA, Version 4.2.1 [computer software]. Santa Fe, NM, USA: OpenEye Scientific Software.

    Google Scholar 

  • Pelissero, C., Lenczowski, M. J. P., Chinzi, D., Davail-Cuisset, B., Sumpter, J. P., & Fostier, A. (1996). Effects of flavonoids on aromatase activity, an in vitro study. Journal of Steroid Biochemistry and Molecular Biology, 57, 215–223. DOI: 10.1016/0960-0760(95)00261-8.

    Article  CAS  Google Scholar 

  • Piacham, T., Isarankura-Na-Ayudhya, C., Nantasenamat, C., Yainoy, S., Ye, L., Bülow, L., & Prachayasittikul, V. (2006). Metalloantibiotic Mn(II)-bacitracin complex mimicking manganese superoxide dismutase. Biochemical and Biophysical Research Communications, 341, 925–930. DOI: 10.1016/j.bbrc.2006.01.045.

    Article  CAS  Google Scholar 

  • Piacham, T., Nantasenamat, C., Suksrichavalit, T., Puttipanyalears, C., Pissawong, T., Maneewas, S., Isarankura-Na-Ayudhya, C., & Prachayasittikul, V. (2009). Synthesis and theoretical study of molecularly imprinted nanospheres for recognition of tocopherols. Molecules, 14, 2985–3002. DOI: 10.3390/molecules14082985.

    Article  CAS  Google Scholar 

  • Pingaew, R., Tongraung, P., Worachartcheewan, A., Nantasenamat, C., Prachayasittikul, S., Ruchirawat, S., & Prachayasittikul, V. (2013). Cytotoxicity and QSAR study of (thio)ureas derived from phenylalkylamines and pyridylalkylamines. Medicinal Chemistry Research, 22, 4016–4029. DOI: 10.1007/s00044-012-0402-6.

    Article  CAS  Google Scholar 

  • Pouget, C., Fagnere, C., Basly, J. P., Besson, A. E., Champavier, Y., Habrioux, G., & Chulia, A. J. (2002a). Synthesis and aromatase inhibitory activity of flavanones. Pharmaceutical Research, 19, 286–291. DOI: 10.1023/a:1014490817731.

    Article  CAS  Google Scholar 

  • Pouget, C., Fagnere, C., Basly, J. P., Habrioux, G., & Chulia, A. J. (2002b). New aromatase inhibitors. Synthesis and inhibitory activity of pyridinyl-substituted flavanone derivatives. Bioorganic & Medicinal Chemistry Letters, 12, 1059–1061. DOI: 10.1016/s0960-894x(02)00072-0.

    Article  CAS  Google Scholar 

  • Prachayasittikul, V., Isarankura-Na-Ayudhya, C., Tantimongcolwat, T., Nantasenamat, C., & Galla, H. J. (2007). EDTAinduced membrane fluidization and destabilization: Biophysical studies on artificial lipid membranes. Acta Biochimica et Biophysica Sinica, 39, 901–913. DOI: 10.1111/j.1745-7270.2007.00350.x.

    Article  Google Scholar 

  • Prachayasittikul, S., Wongsawatkul, O., Worachartcheewan, A., Nantasenamat, C., Ruchirawat, S., & Prachayasittikul, V. (2010). Elucidating the structure-activity relationships of the vasorelaxation and antioxidation properties of thionicotinic acid derivatives. Molecules, 15, 198–214. DOI: 10.3390/molecules15010198.

    Article  CAS  Google Scholar 

  • Sainsbury, R. (2013). The development of endocrine therapy for women with breast cancer. Cancer Treatment Reviews, 39, 507–517. DOI: 10.1016/j.ctrv.2012.07.006.

    Article  CAS  Google Scholar 

  • Simpson, E. R., Mahendroo, M. S., Means, G. D., Kilgore, M. W., Hinshelwood, M. M., Graham-Lorence, S., Amarneh, B., Ito, Y., Fisher, C. R., Michael, M. D., Mendelson, C. R., & Bulun, S. E. (1994). Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocrine Reviews, 15, 342–355. DOI: 10.1210/edrv-15-3-342.

    CAS  Google Scholar 

  • Suksrichavalit, T., Prachayasittikul, S., Piacham, T., Isarankura-Na-Ayudhya, C., Nantasenamat, C., & Prachayasittikul, V. (2008). Copper complexes of nicotinic-aromatic carboxylic acids as superoxide dismutase mimetics. Molecules, 13, 3040–3056. DOI: 10.3390/molecules13123040.

    Article  CAS  Google Scholar 

  • Suksrichavalit, T., Prachayasittikul, S., Nantasenamat, C., Isarankura-Na-Ayudhya, C., & Prachayasittikul, V. (2009). Copper complexes of pyridine derivatives with superoxide scavenging and antimicrobial activities. European Journal of Medicinal Chemistry, 44, 3259–3265. DOI: 10.1016/j.ejmech.2009.03.033.

    Article  CAS  Google Scholar 

  • Talete (2007). Dragon for windows (software for molecular descriptor calculations), version 5.5 [computer software]. Milano, Italy: Talete.

    Google Scholar 

  • Thippakorn, C., Suksrichavalit, T., Nantasenamat, C., Tantimongcolwat, T., Isarankura-Na-Ayudhya, C., Naenna, T., & Prachayasittikul, V. (2009). Modeling the LPS neutralization activity of anti-endotoxins. Molecules, 14, 1869–1888. DOI: 10.3390/molecules14051869.

    Article  CAS  Google Scholar 

  • Todeschini, R., & Consonni, V. (2009). Molecular descriptors for chemoinformatics. Weinheim, Germany: Wiley.

    Book  Google Scholar 

  • Vapnik, V. (1998). Statistical learning theory. New York, NY, USA: Wiley.

    Google Scholar 

  • Wang, Y., Gho, W. M., Chan, F. L., Chen, S., & Leung, L. K. (2008). The red clover (Trifolium pratense) isoflavone biochanin A inhibits aromatase activity and expression. British Journal of Nutrition, 99, 303–310. DOI: 10.1017/s0007114507811974.

    Article  CAS  Google Scholar 

  • Whitehead, S. A., & Lacey, M. (2003). Phytoestrogens inhibit aromatase but not 17β-hydroxysteroid dehydrogenase (HSD) type 1 in human granulosa-luteal cells: evidence for FSH induction of 17β-HSD. Human Reproduction, 18, 487–494. DOI: 10.1093/humrep/deg125.

    Article  CAS  Google Scholar 

  • Worachartcheewan, A., Nantasenamat, C., Naenna, T., Isarankura-Na-Ayudhya, C., & Prachayasittikul, V. (2009). Modeling the activity of furin inhibitors using artificial neural network. European Journal of Medicinal Chemistry, 44, 1664–1673. DOI: 10.1016/j.ejmech.2008.09.028.

    Article  CAS  Google Scholar 

  • Worachartcheewan, A., Nantasenamat, C., Isarankura-Na-Ayudhya, C., Pidetcha, P., & Prachayasittikul, V. (2010). Identification of metabolic syndrome using decision tree analysis. Diabetes Research and Clinical Practice, 90, e15–e18. DOI: 10.1016/j.diabres.2010.06.009.

    Article  Google Scholar 

  • Worachartcheewan, A., Nantasenamat, C., Isarankura-Na-Ayudhya, C., Prachayasittikul, S., & Prachayasittikul, V. (2011). Predicting the free radical scavenging activity of curcumin derivatives. Chemometrics and Intelligent Laboratory Systems, 109, 207–216. DOI: 10.1016/j.chemolab.2011.09.010.

    Article  CAS  Google Scholar 

  • Worachartcheewan, A., Nantasenamat, C., Isarankura-Na-Ayudhya, C., & Prachayasittikul, V. (2013). QSAR study of amidino bis-benzimidazole derivatives as potent antimalarial agents against Plasmodium falciparum. Chemical Papers, 67, 1462–1473. DOI: 10.2478/s11696-013-0398-5.

    Article  CAS  Google Scholar 

  • Yahiaoui, S., Pouget, C., Fagnere, C., Champavier, Y., Habrioux, G., & Chulia, A. J. (2004). Synthesis and evaluation of 4-triazolylflavans as new aromatase inhibitors. Bioorganic & Medicinal Chemistry Letters, 14, 5215–5218. DOI: 10.1016/j.bmcl.2004.07.090.

    Article  CAS  Google Scholar 

  • Yahiaoui, S., Pouget, C., Buxeraud, J., Chulia, A. J., & Fagnère, C. (2011). Lead optimization of 4-imidazolylflavans: New promising aromatase inhibitors. European Journal of Medicinal Chemistry, 46, 2541–2545. DOI: 10.1016/j.ejmech.2011. 03.043.

    Article  CAS  Google Scholar 

  • Zou, C., & Zhou, L. (2007). QSAR study of oxazolidinone antibacterial agents using artificial neural networks. Molecular Simulation, 33, 517–530. DOI: 10.1080/08927020601188528.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanin Nantasenamat.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nantasenamat, C., Worachartcheewan, A., Mandi, P. et al. QSAR modeling of aromatase inhibition by flavonoids using machine learning approaches. Chem. Pap. 68, 697–713 (2014). https://doi.org/10.2478/s11696-013-0498-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0498-2

Keywords

Navigation