Skip to main content
Log in

Effect of support on activity of palladium catalysts in nitrobenzene hydrogenation

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The effect of two types of catalysts on the activity of the catalytic hydrogenation of nitrobenzene was studied. Catalysts were prepared by the surface deposition of palladium hydroxide with a simultaneous reduction with formaldehyde in a basic environment and were characterised by X-ray powder diffraction, transmission electron microscopy, adsorption-desorption, and catalytic tests — hydrogenation of nitrobenzene in methanol. The influence of the supports’ (activated carbon and a mixture of activated carbon and multi-walled carbon nanotubes) surface area is discussed. Despite having a size comparable (4–5 nm) to crystallites of metallic palladium, the catalyst prepared on a mixture of activated carbon and nanotubes (Pd/C/CNT) was significantly less active than the catalyst prepared on pure activated carbon (Pd/C); the rate of this reaction was approximately 30 % lower than the initial reaction rate. This feature could be attributed to the lower specific surface area of the Pd/C/CNT (531 m2 g−1) in comparison with the Pd/C (692 m2 g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bianchi, C. L., Gotti, E., Toscano, L., & Ragaini, V. (1997). Preparation of Pd/C catalysts via ultrasound: a study of the metal distribution. Ultrasonics Sonochemistry, 4, 317–320. DOI: 10.1016/s1350-4177(97)00035-7.

    Article  CAS  Google Scholar 

  • Belykh, L. B., Titova, Y. Y., Umanets, V. A., & Shmidt, F. K. (2006). Palladium hydrogenation catalysts modified with aluminum- and phosphorus-containing compounds and with alcohols: Effect of modifiers. Russian Journal of Applied Chemistry, 79, 1271–1277. DOI: 10.1134/s1070427206080106.

    Article  CAS  Google Scholar 

  • Bouchenafa-Saïb, N., Grange, P., Verhasselt, P., Addoun, F., & Dubois, V. (2005). Effect of oxidant treatment of date pit active carbons used as Pd supports in catalytic hydrogenation of nitrobenzene. Applied Catalysis A: General, 286, 167–174. DOI: 10.1016/j.apcata.2005.02.022.

    Article  Google Scholar 

  • Campanati, M., Fornasari, G., & Vaccari, A. (2003). Fundamentals in the preparation of heterogeneous catalysts. Catalysis Today, 77, 299–314. DOI: 10.1016/s0920-5861(02)00375-9.

    Article  CAS  Google Scholar 

  • Gelder, E. A., Jackson, S. D., & Lok, C. M. (2002). A study of nitrobenzene hydrogenation over palladium/carbon catalysts. Catalysis Letters, 84, 205–208. DOI: 10.1023/a:10214 32104496.

    Article  CAS  Google Scholar 

  • Gelder, E. A., Jackson, S. D., & Lok, C. M. (2006). Competitive hydrogenation of nitrobenzene, nitrosobenzene and azobenzene. In S. R. Schmidt (Ed.), Catalysis of organic reactions, twenty-first conference (pp. 167–176). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Harada, T., Ikeda, S., Miyazaki, M., Sakata, T., Mori, H., & Matsumura, M. (2007). A simple method for preparing highly active palladium catalysts loaded on various carbon supports for liquid-phase oxidation and hydrogenation reactions. Journal of Molecular Catalysis A: Chemical, 268, 59–64. DOI: 10.1016/j.molcata.2006.12.010.

    Article  CAS  Google Scholar 

  • Hudec, P. (2012). Textúra tuhych materiálov. Charakterizácia adsorbentov a katalyzátorov fyzikálnou adsorpciou dusíka. Bratislava, Slovakia: Slovak Technical University. (in Slovak)

    Google Scholar 

  • Hyde, T. (2008). Crystallite size analysis of supported platinum catalysts by XRD. Platinum Metals Review, 52, 129–130. DOI: 10.1595/147106708x299547.

    Article  Google Scholar 

  • Janssen, H. J., Kruithof, A. J., Steghuis, G. J., & Westerterp, K. R. (1990a). Kinetics of the catalytic hydrogenation of 2,4-dinitrotoluene. 1. Experiments, reaction scheme, and catalyst activity. Industrial & Engineering Chemistry Research, 29, 754–766. DOI: 10.1021/ie00101a008.

    Article  CAS  Google Scholar 

  • Janssen, H. J., Kruithof, A. J., Steghuis, G. J., & Westerterp, K. R. (1990b). Kinetics of the catalytic hydrogenation of 2,4 dinitrotoluene. 2. Modeling of the reaction rates and catalyst activity. Industrial & Engineering Chemistry Research, 29, 1822–1829. DOI: 10.1021/ie00105a013.

    Article  CAS  Google Scholar 

  • Jin, S., Qian, W. Z., Liu, Y., Wei, F., Wang, D. Z., & Zhang, J. C. (2010). Granulated carbon nanotubes as the catalyst support for Pt for the hydrogenation of nitrobenzene. Australian Journal of Chemistry, 63, 131–134. DOI: 10.1071/ch09162.

    Article  CAS  Google Scholar 

  • Kolbe, H. (1871). Ueber die reduzierenden Wirkungen des vom Palladium absorbirtenWasserstoffgases. Journal für Praktische Chemie, 4, 418–419. (in German)

    Google Scholar 

  • Králik, M., Turáková, M., Mačák, I., & Wenchich, Š. (2012). Catalytic hydrogenation of aromatic compounds in the liquid phase. Journal of Chemistry and Chemical Engineering, 6, 1074–1082.

    Google Scholar 

  • Ledoux, M. J., Vieira, R., Pham-Huu, C., & Keller, N. (2003). New catalytic phenomena on nanostructured (fibers and tubes) catalysts. Journal of Catalysis, 216, 333–342. DOI: 10.1016/s0021-9517(02)00108-2.

    Article  CAS  Google Scholar 

  • Li, C. H., Yu, Z. X., Yao, K. F., Ji, S. F., & Liang, J. (2005). Nitrobenzene hydrogenation with carbon nanotubesupported platinum catalyst under mild conditions. Journal of Molecular Catalysis A: Chemical, 226, 101–105. DOI: 10.1016/j.molcata.2004.09.046.

    Article  CAS  Google Scholar 

  • Ma, L., Chen, S., Lu, C. S., Zhang, Q. F., & Li, X. N. (2011). Highly selective hydrogenation of 3,4-dichloronitrobenzene over Pd/C catalysts without inhibitors. Catalysis Today, 173, 62–67. DOI: 10.1016/j.cattod.2011.06.011.

    Article  CAS  Google Scholar 

  • Moreno-Castilla, C., Ferro-Garca, M. A., Joly, J. P., Bautista-Toledo, I., Carrasco-Marin, F., & Rivera-Utrilla, J. (1995). Activated carbon surface modification by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments. Langmuir, 11, 4386–4392. DOI: 10.1021/la00011a035.

    Article  CAS  Google Scholar 

  • Navaladian, S., Viswanathan, B., Varadarajan, T. K., & Viswanath, R. P. (2008). A rapid synthesis of oriented palladium nanoparticles by UV irradiation. Nanoscale Research Letters, 4, 181–186. DOI: 10.1007/s11671-008-9223-4.

    Article  Google Scholar 

  • Nishimura, S. (2001). Handbook of heterogeneous catalytic hydrogenation for organic synthesis. New York, NY, USA: Wiley.

    Google Scholar 

  • Obraztsova, I. I., Eremenko, N. K., & Velyakina, Y. N. (2008). Reaction kinetics of nitrobenzene hydrogenation on a palladium catalyst supported on nanodiamonds. Kinetics and Catalysis, 49, 401–406. DOI: 10.1134/s0023158408030130.

    Article  CAS  Google Scholar 

  • Pham-Huu, C., Keller, N., Ehret, G., Charbonniere, L. J., Ziessel, R., & Ledoux, M. J. (2001). Carbon nanofiber supported palladium catalyst for liquid-phase reactions: An active and selective catalyst for hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. Journal of Molecular Catalysis A: Chemical, 170, 155–163. DOI: 10.1016/s1381-1169(01)00055- 3.

    Article  CAS  Google Scholar 

  • Salman, F., Park, C., & Baker, R. T. K. (1999). Hydrogenation of crotonaldehyde over graphite nanofiber supported nickel. Catalysis Today, 53, 385–394. DOI: 10.1016/s0920-5861(99)00132-7.

    Article  CAS  Google Scholar 

  • Saytzeff, M. (1872). Ueber die Einwirkung des vom Palladium absorbirten Wasserstoffs auf einige organische Verbindungen. Journal für Praktische Chemie, 6, 128–136. (in German)

    Article  Google Scholar 

  • Semikolenov, V. A. (1992). Modern approaches to the preparation of “palladium on charcoal” catalysts. Russian Chemical Reviews, 61, 168–174. DOI: 10.1070/rc1992v061n02abeh000938.

    Article  Google Scholar 

  • Serp, P., Corrias, M., & Kalck, P. (2003). Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A: General, 253, 337–358. DOI: 10.1016/s0926-860x(03)00549-0.

    Article  CAS  Google Scholar 

  • Udayakumar, V., Alexander, S., Gayathri, V., Shivakumaraiah, & Viswanathan, B. (2011). Study on the influence of substituents upon the hydrogenation of nitrobenzene using a polymer-supported palladium-imidazole complex catalyst. Reaction Kinetics Mechanisms and Catalysis, 103, 341–352. DOI: 10.1007/s11144-011-0308-1.

    Article  CAS  Google Scholar 

  • Wan, B. S., Liao, S. J., Xu, Y., & Yu, D. R. (1998). Synergic effect of palladium-based bimetallic catalysts for the hydrogenation of nitroaromatics. Reaction Kinetics and Catalysis Letters, 63, 397–401. DOI: 10.1007/bf02475418.

    Article  CAS  Google Scholar 

  • Watanabe, S., & Arunajatesan, V. (2010). Influence of acid modification on selective phenol hydrogenation over Pd/activated carbon catalysts. Topics in Catalysis, 53, 1150–1152. DOI: 10.1007/s11244-010-9551-3.

    Article  CAS  Google Scholar 

  • Wu, H., Zhuo, L. M., He, Q., Liao, X. P., & Shi, B. (2009). Heterogeneous hydrogenation of nitrobenzenes over recyclable Pd(0) nanoparticle catalysts stabilized by polyphenol-grafted collagen fibers. Applied Catalysis A: General, 366, 44–56. DOI: 10.1016/j.apcata.2009.06.024.

    Article  CAS  Google Scholar 

  • Zaitseva, N. A., Goidin, V. V., Molchanov, V. V., Chesnokov, V. V., Buyanov, R. A., & Utkin, V. A. (2011). Catalysts based on filamentous carbon in the hydrogenation of aromatic compounds. Kinetics and Catalysis, 52, 770–773. DOI: 10.1134/s0023158411050181.

    Article  CAS  Google Scholar 

  • Zhao, Y., Li, C. H., Yu, Z. X., Yao, K. F., Ji, S. F., & Liang, J. (2007). Effect of microstructures of Pt catalysts supported on carbon nanotubes (CNTs) and activated carbon (AC) for nitrobenzene hydrogenation. Materials Chemistry and Physics, 103, 225–229. DOI: 10.1016/j.matchemphys.2007.02.045.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ľubomír Pikna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pikna, Ľ., Heželová, M., Demčáková, S. et al. Effect of support on activity of palladium catalysts in nitrobenzene hydrogenation. Chem. Pap. 68, 591–598 (2014). https://doi.org/10.2478/s11696-013-0497-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0497-3

Keywords

Navigation