Skip to main content

Advertisement

Log in

“Green synthesis” of benzothiazepine library of indeno analogues and their in vitro antimicrobial activity

  • Short Communication
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A novel series of indeno-benzothiazepine derivatives was synthesised via a “green” route. Synthesis of these compounds involves the treatment of dinucleophiles such as 2-aminobenzenethiols with α,β-unsaturated ketones in poly(oxyethylene) (poly(ethylene glycol), PEG-400) catalysed by acetic acid. The synthone α,β-unsaturated ketones were obtained by Claisen-Schmidt condensation of indan-1-one with substituted pyrazole-2-carbaldehydes prompted by bleaching earth (pH 12.5) as catalyst and PEG-400 as “green” reaction solvent. Screening of all the synthesised compounds for antimicrobial activity revealed that most of these compounds exhibited moderate to significant antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Ballini, R., Bosica, G., Maggi, R., Ricciutelli, M., Righi, P., Sartori, G., & Sartorio, R. (2001). Clay-catalysed solventless synthesis of trans-chalcones. Green Chemistry, 3, 178–180. DOI: 10.1039/b101355f.

    Article  CAS  Google Scholar 

  • Baag, M. M., Sahoo, M. K., Puranik, V. G.,& Argade, N. P. (2007). Reactions of o-aminothiophenol and o-aminophenyl disulfide with itaconic anhydride and (-)-dimenthyl itaconate: Access to enantiomerically pure 1,5-benzothiazepines and benzothiazolyl-2-methylacrylic acid. Synthesis, 2007, 457–463. DOI: 10.1055/s-2006-958977.

    Article  Google Scholar 

  • Chandrasekhar, S., Narsihmulu, C., Sultana, S. S.,& Reddy, N. R. (2002). Poly(ethylene glycol) (PEG) as a reusable solvent medium for organic synthesis. Application in the Heck reaction. Organic Letters, 4, 4399–4401. DOI: 10.1021/ol0266976.

    Article  CAS  Google Scholar 

  • Chandrasekhar, S., Narsihmulu, C., Sultana, S. S., & Reddy, N. R. (2003). Osmium tetroxide in poly(ethylene glycol) (PEG): a recyclable reaction medium for rapid asymmetric dihydroxylation under Sharpless conditions. Chemical Communication, 2003, 1716–1717. DOI: 10.1039/b305154b.

    Google Scholar 

  • Chen, J., Spear, S. K., Huddleston, J. G., & Rogers, R. D. (2005). Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chemistry, 7, 64–82. DOI: 10.1039/b413546f.

    Article  CAS  Google Scholar 

  • Chobe, S. S., Dawane, B. S., Tumbi, K. M., Nandekar, P. P.,& Sangamwar, A. T. (2012). An ecofriendly synthesis and DNA binding interaction study of some pyrazolo[1,5-a]pyrimidines derivatives. Bioorganic & Medicinal Chemistry Letters, 22, 7566–7572. DOI: 10.1016/j.bmcl.2012.10.027.

    Article  CAS  Google Scholar 

  • Chobe, S. S., Kamble, R. D., Patil, S. D., Acharya, A. P., Hese, S. V., Yemul, O. S.,& Dawane, B. S. (2013). Green approach towards synthesis of substituted pyrazole-1,4-dihydro,9-oxa,1,2,6,8-tetrazacyclopentano[b]naphthalene-5-one derivatives as antimycobacterial agents. Medicinal Chemistry Research, 22, 5197–5203. DOI: 10.1007/s00044-013-0487-6.

    Article  CAS  Google Scholar 

  • Cox, D. A., & Matlib, M. A. (1993). Modulation of intramitochondrial free Ca2+ concentration by antagonists of Na+ -Ca2+ exchange. Trends in Pharmacological Sciences, 14, 408–413. DOI: 10.1016/0165-6147(93)90063-p.

    Article  CAS  Google Scholar 

  • Dawane, B. S., Konda, S. G., Mandawad, G. G.,& Shaikh, B. M. (2010a). Poly(ethylene glycol) (PEG-400) as an alternative reaction solvent for the synthesis of some new 1-(4-(4′-chlorophenyl-2-thiazolyl)-3-aryl-5-(2-butyl-4-chloro-1Himidazol-5-yl)-2-pyrazolines and their in vitro antimicrobial evaluation. European Journal of Medicinal Chemistry, 45, 387–392. DOI: 10.1016/j.ejmech.2009.10.015.

    Article  CAS  Google Scholar 

  • Dawane, B. S., Shaikh, B. M., Khandare, N. T., Kamble, V. T., Chobe, S. S.,& Konda, S. G. (2010b). Eco-friendly polyethylene glycol-400: a rapid and efficient recyclable reaction medium for the synthesis of thiazole derivatives. Green Chemistry Letters and Reviews, 3, 205–208. DOI: 10.1080/17518251003709506.

    Article  CAS  Google Scholar 

  • De Sarro, G., Chimirri, A., De Sarro, A., Gitto, R., Grasso, S., & Zappalà, M. (1995). 5H[1,2,4]Oxadiazolo[5,4-d][1,5]benzothiazepines as anticonvulsant agents in DBA/2 mice. European Journal of Medicinal Chemistry, 30, 925–929. DOI: 10.1016/0223-5234(96)88311-5.

    Article  Google Scholar 

  • Di Santo, R., & Costi, R. (2005). 2H-Pyrrolo[3,4-b][1,5]benzothiazepine derivatives as potential inhibitors of HIV-1 reverse transcriptase. II Farmaco, 60, 385–392. DOI: 10.1016/j.farmac.2005.03.006.

    Article  Google Scholar 

  • El-Bayouki, K. A. M. (2013). Benzo[1,5]thiazepine: Synthesis, reactions, spectroscopy, and applications. Organic Chemistry International, 2013, 210474. DOI: 10.1155/2013/210474.

    Article  Google Scholar 

  • Grandolini, G., Perioli, L.,& Ambrogi, V. (1999). Synthesis of some new 1,4-benzothiazine and 1,5-benzothiazepine tricyclic derivatives with structural analogy with TIBO and their screening for anti-HIV activity. European Journal of Medicinal Chemistry, 34, 701–709. DOI: 10.1016/s0223-5234(99)00223-8.

    Article  CAS  Google Scholar 

  • Heldebrant, D. T., & Jessop, P. G. (2003). Liquid poly(ethylene glycol) and supercritical carbon dioxide: a benign biphasic solvent system for use and recycling of homogeneous catalysts. Journal of the American Chemical Society, 125, 5600–5601. DOI: 10.1021/ja029131l.

    Article  CAS  Google Scholar 

  • Jain, R., Yadav, T., Kumar, M.,& Yadav, A. K. (2011). Facile ionic liquid-mediated protocol for the regioselective synthesis of 1,5-benzothiazepines. Synthetic Communications, 41, 1889–1900. DOI: 10.1080/00397911.2010.493626.

    Article  CAS  Google Scholar 

  • Konda, S. G., Humne, V. T., & Lokhande, P. D. (2011). Rapid and selective deallylation of allyl ethers and esters using iodine in polyethylene glycol-400. Green Chemistry, 13, 2354–2358. DOI: 10.1039/c1gc15153c.

    Article  CAS  Google Scholar 

  • Kurokawa, J., Adachi-Akahane, S.,& Nagao, T. (1997). Effects of a novel, potent benzothia-zepine Ca2+ channel antagonist, DTZ323, on guinea-pig ventricular myocytes. European Journal of Pharmacology, 325, 229–236. DOI: 10.1016/s0014-2999(97)00119-2.

    Article  CAS  Google Scholar 

  • Miyata, O., Hinada, T., Ninomiya, I., & Naito, T. (1997). Asymmetric construction of two contiguous stereocenters by diastereoface differentiating addition reaction of thiols to chiral imides: Formal synthesis of (+)-diltiazem. Tetrahedron, 53, 2421–2438. DOI: 10.1016/s0040-4020(96)01191-x.

    Article  CAS  Google Scholar 

  • Prakash, O., Kumar, A. Sadana, A., Prakash, R., Singh, S. P., Claramunt, R. M., Sanz, D., Alkorta, I.,& Elguero, J. (2005). Study of the reaction of chalcone analogs of dehydroacetic acid and o-aminothiophenol: synthesis and structure of 1,5-benzothiazepines and 1,4-benzothiazines. Tetrahedron, 61, 6642–6651. DOI: 10.1016/j.tet.2005.03.035.

    Article  CAS  Google Scholar 

  • Rao, D. M., Giridhar, T., Reddy, R. B.,& Mouli, G. V. P. C. (1995). A novel synthesis of benzothiazepines. Indian Journal of Heterocyclic Chemistry, 5, 145–148.

    CAS  Google Scholar 

  • Sindler-Kulyk, M., & Neckers, D. C. (1982). Photochemistry of 2-phenylbenzothiazole with ethoxyacetylene and ethoxypropyne. Synthesis of 1,5-benzothiazepines The Journal of Organic Chemistry, 47, 4914–4919. DOI: 10.1021/ jo00146a018.

    CAS  Google Scholar 

  • Upadhyay, K. Manvar, A., Rawal, K., Joshi, S., Trivedi, J., Chaniyara, R., & Shah, A. (2012). Evaluation of structurally diverse benzoazepines clubbed with coumarins as Mycobacterium tuberculosis agents. Chemical Biology & Drug Design, 80, 1003–1008. DOI: 10.1111/j.1747-0285.2012.01436.x.

    Article  CAS  Google Scholar 

  • Urbanski, M. J., Chen, R. H., Demarest, K. T., Gunnet, J., Look, R., Ericson, E., Murray, W. V., Rybczynski, P. J.,& Zhang, X. (2003). 2,5-Disubstituted 3,4-dihydro-2Hbenzo[b][1,4]thiazepines as potent and selective V2 arginine vasopressin receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 13, 4031–4034. DOI: 10.1016/j.bmcl.2003.08.051.

    Article  CAS  Google Scholar 

  • Yadav, J. S., Reddy, B. V. S., Eshwaraiah, B., & Anuradha, K. (2002). Amberlyst-15®: a novel and recyclable reagent for the synthesis of 1,5-benzodiazepines in ionic liquids. Green Chemistry, 4, 592–594. DOI: 10.1039/b206558b.

    Article  CAS  Google Scholar 

  • Yang, X., Buzon, L., Hamanaka, E.,& Liu, K. K. C. (2000). Enzymatic resolution of benzothiazepine for the preparation of squalene synthetase inhibitors. Tetrahedron Asymmetry, 11, 4447–4450. DOI: 10.1016/s0957-4166(00)00458-4.

    Article  CAS  Google Scholar 

  • Zhong, W., Chen, X.,& Zhang, Y. (2000). Low-valent titanium induced simultaneous reduction of nitro group and S-S bond in nitrodisulfides: A novel method for the synthesis of benzothiazoline, benzothiazoles and 2,3-dihydro-1,5-benzothiazepines. Synthetic Communications, 30, 4451–4460. DOI: 10.1080/00397910008087072.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar S. Dawane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acharya, A.P., Kamble, R.D., Patil, S.D. et al. “Green synthesis” of benzothiazepine library of indeno analogues and their in vitro antimicrobial activity. Chem. Pap. 68, 719–724 (2014). https://doi.org/10.2478/s11696-013-0496-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0496-4

Keywords

Navigation