Skip to main content
Log in

Efficient hydrolysis of glucose-1-phosphate catalyzed by metallomicelles with histidine residue

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Phosphate esters play an important role in genetic information transfer, cell signal transduction, energy transmission and metabolic processes of living beings. Efficient catalytic hydrolysis of phosphate esters is still an attractive and challenging problem. Here, a new 2-amino-N-dodecyl-3-(1H-imidazol-5-yl)propanamide (L2) surfactant was synthesized and its metallomicelles of La3+, Cu2+, Co2+, and Zn2+ complexes were used as mimic metalloenzymes to catalyze the hydrolysis of glucose-1-phosphate (G1P) in a buffer solution at 35°C. The metallomicelle systems can efficiently catalyze the hydrolysis of G1P. The rare-earth metallomicelle LaL2 has the highest catalytic activity compared with those of the transition metal micelles CuL2, CoL2, and ZnL2. Different association behaviors of metallomicelles and substrate G1P were proposed. The imidazole group might accelerate the hydrolysis by activating H2O associated with the metal into a metal-OH group. A possible catalytic mechanism was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer-Siebenlist, B., Meyer, F., Farkas, E., Vidovic, D., & Dechert, S. (2005). Effect of Zn…pZn separation on the hydrolytic activity of model dizinc phosphodiesterases. Chemistry — A European Journal, 11, 4349–4360. DOI: 10.1002/chem.200400932.

    Article  CAS  Google Scholar 

  • Bhattacharya, S., & Kumari, N. (2009). Metallomicelles as potent catalysts for the ester hydrolysis reactions in water. Coordination Chemistry Reviews, 253, 2133–2149. DOI: 10.1016/j.ccr.2009.01.016.

    Article  CAS  Google Scholar 

  • Boudou, M., Ogawa, C., & Kobayashi, S. (2006). Chiral scandium-catalysed enantioselective ring-opening of meso-epoxides with N-heterocycle, alcohol and thiol derivatives in water. Advanced Synthesis & Catalysis, 348, 2585–2589. DOI: 10.1002/adsc.200600290.

    Article  CAS  Google Scholar 

  • Buchholz, R. R., Etienne, M. E., Dorgelo, A., Mirams, R. E., Smith, S. J., Chow, S. Y., Hanton, L. R., Jameson, G. B., Schenk, G., & Gahan, L. R. (2008). A structural and catalytic model for zinc phosphoesterases. Dalton Transactions, 2008, 6045–6054. DOI: 10.1039/b806391e.

    Article  Google Scholar 

  • Bujacz, A., Turek, M., Majzner, W., & Lodyga-Chruscinska, E. (2010). X-ray structure of a novel histidine-copper(II) complex. Russian Journal of Coordination Chemistry, 36, 430–435. DOI: 10.1134/s1070328410060023.

    Article  CAS  Google Scholar 

  • Campbell, P. N., Creasey, N. H., & Parr, C. W. (1952). The specificity of muscle phosphorylase. Biochemical Journal, 52, 448–452.

    CAS  Google Scholar 

  • Chang, Y. C., & Chen, D. H. (2009). Highly efficient hydrolysis of phosphodiester by a copper(II)-chelated chitosan magnetic nanocarrier. Reactive and Functional Polymers, 69, 601–605. DOI: 10.1016/j.reactfunctpolym.2009.04.001.

    Article  CAS  Google Scholar 

  • Chin, J., Banaszczyk, M., Jubian, V., & Zou, X. (1989). Cobalt(III) complex-promoted hydrolysis of phosphate diesters: Comparison in reactivity of rigid cis-diaquotetraazacobalt( III) complexes. Journal of the American Chemical Society, 111, 186–190. DOI: 10.1021/ja00183a029.

    Article  CAS  Google Scholar 

  • Chin, J. (1991). Developing artificial hydrolytic metalloenzymes by a unified mechanistic approach. Accounts of Chemical Research, 24, 145–152. DOI: 10.1021/ar00005a004.

    Article  CAS  Google Scholar 

  • Chin, J. (1997). Artificial dinuclear phosphoesterases. Current Opinion in Chemical Biology, 1, 514–521. DOI: 10.1016/ s1367-5931(97)80046-4.

    Article  CAS  Google Scholar 

  • Daines, T. L., & Morse, K. W. (1976). A spectrophotometric method for determination of glucose in blood serum. A freshman laboratory experiment for medically and biologically oriented students. Journal of Chemical Education, 53, 126–127. DOI: 10.1021/ed053p126.

    Article  CAS  Google Scholar 

  • Deal, K. A., Park, G. S., Shao, J. L., Chasteen, N. D., Brechbiel, M. W., & Planalp, R. P. (2001). Copper(II) complexes of novel N-alkylated derivatives of cis,cis-1,3,5-triaminocyclohexane. 2. Metal-promoted phosphate diester hydrolysis. Inorganic Chemistry, 40, 4176–4182. DOI: 10.1021/ic000830d.

    Article  CAS  Google Scholar 

  • Desbouis, D., Troitsky, I. P., Belousoff, M. J., Spiccia, L., & Graham, B. (2012). Copper(II), zinc(II) and nickel(II) complexes as nuclease mimetics. Coordination Chemistry Reviews, 256, 897–937. DOI: 10.1016/j.ccr.2011.12.005.

    Article  CAS  Google Scholar 

  • Deschamps, P., Kulkarni, P. P., & Sarkar, B. (2004). X-ray structure of physiological copper(II)-bis(l-histidinato) complex. Inorganic Chemistry, 43, 3338–3340. DOI: 10.1021/ ic035413q.

    Article  CAS  Google Scholar 

  • Dwars, T., Paetzold, E., & Oehme, G. (2005). Reactions in micellar systems. Angewandte Chemie International Edition, 44, 7174–7199. DOI: 10.1002/anie.200501365.

    Article  CAS  Google Scholar 

  • Gellman, S. H., Petter, R., & Breslow, R. (1986). Catalytic hydrolysis of a phosphate triester by tetracoordinated zinc complexes. Journal of the American Chemical Society, 108, 2388–2394. DOI: 10.1021/ja00269a041.

    Article  CAS  Google Scholar 

  • Han, Q. X., Zhang, L. J., He, C., Niu, J. Y., & Duan, C. Y. (2012). Metal-organic frameworks with phosphotungstate incorporated for hydrolytic cleavage of a DNA-model phosphodiester. Inorganic Chemistry, 51, 5118–5127. DOI: 10.1021/ic202685e.

    Article  CAS  Google Scholar 

  • Holyer, R. H., Hubbard, C. D., Kettle, S. F. A., & Wilkins, R. G. (1965). The kinetics of replacement reactions of complexes of the transition metals with 1,10-phenanthroline and 2,2′-bipyridine. Inorganic Chemistry, 4, 929–935. DOI: 10.1021/ic50029a002.

    Article  CAS  Google Scholar 

  • Jiang, F. B., Du, J., Yu, X. Q., Bai, J. K., & Zeng, X. C. (2004). Metallomicellar catalysis: accelerated hydrolysis of BNPP by copper(II), zinc(II), and nickel(II) complexes of long alkanol-imidazole in CTAB micellar solution. Journal of Colloid and Interface Science, 273, 497–504. DOI: 10.1016/j.jcis.2004.01.078.

    Article  CAS  Google Scholar 

  • Jiang, F. B., Jiang, B. Y., Cao, Y. S., Meng, X., Yu, X. G., & Zeng, X. C. (2005). Metallomicellar catalysis: Hydrolysis of phosphate monoester by Cu(II), Zn(II), Ni(II) and Co(II) complexes of pyridyl ligands in CTAB micellar solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 254, 91–97. DOI: 10.1016/j.colsurfa.2004.11.032.

    Article  CAS  Google Scholar 

  • Li, X. L., Li, H., Liu, G. Q., Deng, Z. W., Wu, S. L., Li, P. H., Xu, Z. S., Xu, H. B., & Chu, P. K. (2012). Magnetiteloaded fluorine-containing polymeric micelles for magnetic resonance imaging and drug delivery. Biomaterials, 33, 3013–3024. DOI: 10.1016/j.biomaterials.2011.12.042.

    Article  Google Scholar 

  • Long, X. H., Yang, P. Y., Liu, Q., Yao, J., Wang, Y., He, G. H., Hong, G. Y., & Ni, J. Z. (2011). Metabolomic profiles delineate potential roles for gadolinium chloride in the proliferation or inhibition of Hela cells. Biometals, 24, 663–677. DOI: 10.1007/s10534-011-9419-4.

    Article  CAS  Google Scholar 

  • Mello, R. S., Orth, E. S., Loh, W., Fiedler, H. D., & Nome, F. (2011). Polymers containing hydroxamate groups: Nanoreactors for hydrolysis of phosphoryl esters. Langmuir, 27, 15112–15119. DOI: 10.1021/la203437j.

    Article  CAS  Google Scholar 

  • Meng, X.G., Guo, Y., Hu, C. W., & Zeng, X. C. (2004). Mimic models of peroxidase — kinetic studies of the catalytic oxidation of hydroquinone by H2O2. Journal of Inorganic Biochemistry, 98, 2107–2113. DOI: 10.1016/j.jinorgbio.2004.09.019.

    Article  CAS  Google Scholar 

  • Nolting, D., Ottosson, N., Faubel, M., Hertel, I. V., & Winter, B. (2008). Pseudoequivalent nitrogen atoms in aqueous imidazole distinguished by chemical shifts in photoelectron spectroscopy. Journal of the American Chemical Society, 130, 8150–8151. DOI: 10.1021/ja8022384.

    Article  CAS  Google Scholar 

  • Ogino, K., Kashihara, N., Ueda, T., Isaka, T., Yoshida, T., & Tagaki, W. (1992). Hydrolytic metalloenzyme models. Metal ion dependent site-selective acylation of hydroxyl groups of bis-imidazole ligands catalyzed by Zn2+ and Cu2+ in the reaction with p-nitrophenyl 2-pyridinecarboxylate in a cationic surfactant micelle. Bulletin of the Chemical Society of Japan, 65, 373–384. DOI: 10.1246/bcsj.65.373.

    Article  CAS  Google Scholar 

  • Olsson, R., Giesler, R., Loring, J. S., & Persson, P. (2010). Adsorption, desorption, and surface-promoted hydrolysis of glucose-1-phosphate in aqueous goethite (α-FeOOH) suspensions. Langmuir, 26, 18760–18770. DOI: 10.1021/la1026152.

    Article  CAS  Google Scholar 

  • Pople, J. A. (2003). Gaussian 03, revision B.05 [computer software]. Gaussian, Inc. Pittsburgh, PA, USA.

    Google Scholar 

  • Rashid, N., Kanai, T., Atomi, H., & Imanaka, T. (2004). Among multiple phosphomannomutase gene orthologues, only one gene encodes a protein with phosphoglucomutase and phosphomannomutase activities in Thermococcus kodakaraensis. Journal of Bacteriology, 186, 6070–6076. DOI: 10.1128/jb.186.18.6070-6076.2004.

    Article  CAS  Google Scholar 

  • Sasidharan, M., Gunawardhana, N., Luitel, H. N., Yokoi, T., Inoue, M., Yusa, S. i., Watari, T., Yoshio, M., Tatsumi, T., & Nakashima, K. (2012). Novel LaBO3 hollow nanospheres of size 34 ± 2 nm templated by polymeric micelles. Journal of Colloid and Interface Science, 370, 51–57. DOI: 10.1016/j.jcis.2011.12.050.

    Article  CAS  Google Scholar 

  • Seidel, Y. E., Lindström, R., Jusys, Z., Cai, J., Wiedwald, U., Ziemann, P., & Behm, R. J. (2007). Nanostructured Pt/GC model electrodes prepared by the deposition of metal-salt-loaded micelles. Langmuir, 23, 5795–5801. DOI:10.1021/la063295o.

    Article  CAS  Google Scholar 

  • Shen, L. M., Liu, Q., Ni, J. Z., & Hong, G. Y. (2009). A proteomic investigation into the human cervical cancer cell line HeLa treated with dicitratoytterbium (III) complex. Chemico-Biological Interactions, 181, 455–462. DOI: 10.1016/j.cbi.2009.07.013.

    Article  CAS  Google Scholar 

  • Srivatsan, S. G., Parvez, M., & Verma, S. (2002). Modeling of prebiotic catalysis with adenylated polymeric templates: Crystal structure studies and kinetic characterization of template-assisted phosphate ester hydrolysis. Chemistry A European Journal, 8, 5184–5191. DOI: 10.1002/1521-3765(20021115)8:22<5184::AID-CHEM5184>3.0.CO;2-2.

    Article  CAS  Google Scholar 

  • Su, X. G., Zheng, X. N., & Ni, J. Z. (2009). Lanthanum citrate induces anoikis of Hela cells. Cancer Letters, 285, 200–209. DOI: 10.1016/j.canlet.2009.05.018.

    Article  CAS  Google Scholar 

  • Taşcioglu, S. (1996). Micellar solutions as reaction media. Tetrahedron, 52, 11113–11152. DOI: 10.1016/0040-4020(96)00669-2.

    Article  Google Scholar 

  • Xie, J. Q., Li, C., Wang, M., & Jiang, B. Y. (2013). Preparation of a new metallomicelle catalyst for the hydrolysis of bis(4-nitrophenyl) phosphate. Chemical Papers, 67, 365–371. DOI: 10.2478/s11696-012-0281-9.

    Article  CAS  Google Scholar 

  • Yamashiro, D., Blake, J., & Li, C. H. (1972). The use of ,N im-bis( tret-butyloxycarbonyl)histidine and N α-2-(p-biphenylyl) isopropyloxycarbonyl-N im-tert-butyloxycarbonylhistidine in the solid-phase synthesis of histidine-containing peptides. Journal of the American Chemical Society, 94, 2855–2859. DOI: 10.1021/ja00763a053.

    Article  CAS  Google Scholar 

  • Ye, Y., Ding, Q. P., & Wu, J. (2008). Three-component reaction of 2-alkynylbenzaldehyde, amine, and nucleophile using Lewis acid-surfactant combined catalyst in water. Tetrahedron, 64, 1378–1382. DOI: 10.1016/j.tet.2007.11.055.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Guang Meng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Meng, XG., Li, JM. et al. Efficient hydrolysis of glucose-1-phosphate catalyzed by metallomicelles with histidine residue. Chem. Pap. 68, 681–688 (2014). https://doi.org/10.2478/s11696-013-0492-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0492-8

Keywords

Navigation