Skip to main content
Log in

Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

1,1-Diacetates derivatives were prepared using the direct condensation of aldehydes with acetic anhydride in the presence of silica-supported boron sulfonic acid (SiO2/B(SO4H)3) as a tri-functional inorganic Brønsted acid catalyst under solvent-free conditions at ambient temperature. The salient features of this methodology are: (i) cheaper process ready availability of the catalyst; (ii) versatility; (iii) high regio-selectivity of the procedure and recyclable property of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggen, D. H., Arnold, J. N., Hayes, P. D., Smoter, N. J., & Mohan, R. S. (2004). Bismuth compounds in organic synthesis. Bismuth nitrate catalyzed chemoselective synthesis of acylals from aromatic aldehydes. Tetrahedron, 60, 3675–3679. DOI: 10.1016/j.tet.2004.02.046.

    CAS  Google Scholar 

  • Deka, N., Kalita, D. J., Borah, R., & Sarma, J. C. (1997). Iodine as acetylation catalyst in the preparation of 1,1-diacetates from aldehydes. Journal of Organic Chemistry, 62, 1563–1564. DOI: 10.1021/jo961741e.

    Article  CAS  Google Scholar 

  • Firouzabadi, H., Iranpoor, N., & Amani, K. (2002). Heteropoly acids as heterogeneous catalysts for thioacetalization and transthioacetalization reactions. Organic Synthesis, 2002, 59–62. DOI: 10.1055/s-2002-19300.

    Article  Google Scholar 

  • Frick, J. G., Jr., & Harper, R. J., Jr. (1984). Acetals as crosslinking reagents for cotton. Journal Applied Polymer Science, 29, 1433–1447. DOI: 10.1002/app.1984.070290436.

    Article  CAS  Google Scholar 

  • Ghorbani-Vaghei, R., & Malaekehpoor, S. M. (2010). Onepot facile synthesis of acridine derivatives under solvent-free condition. Journal of the Iranian Chemical Society, 7, 957–964. DOI: 10.1007/bf03246091.

    Article  CAS  Google Scholar 

  • Ghosh, R., Maiti, S., Chakraborty, A., & Halder, R. J. (2004). Indium triflate: a reusable catalyst for expeditious chemoselective conversion of aldehydes to acylals. Journal of Molecular Catalysis A: Chemical, 215, 49–53. DOI: 10.1016/j.molcata.2004.01.018.

    Article  CAS  Google Scholar 

  • Hajipour, A. R., Zarei, A., & Ruoho, A. E. (2007). P2O5/Al2O3 as an efficient heterogeneous catalyst for chemoselective synthesis of 1,1-diacetates under solvent-free conditions. Tetrahedron Letters, 48, 2881–2884. DOI: 10.1016/j.tetlet.2007.02.090.

    Article  CAS  Google Scholar 

  • Hajipour, A. R., Khazdooz, L., & Ruoho, A. E. (2008). Brönsted acidic ionic liquid as an efficient catalyst for chemoselective synthesis of 1,1-diacetates under solvent-free conditions. Catalysis Communications, 9, 89–96. DOI: 10.1016/j.catcom.2007.05.003.

    Article  CAS  Google Scholar 

  • Hosseini-Sarvari, M. (2011). Synthesis of quinolines using nanoflake ZnO as a new catalyst under solvent-free conditions. Journal of the Iranian Chemical Society, 8, S119–S128.

    Article  CAS  Google Scholar 

  • Jin, T. S., Sun, G., Li, Y.W., & Li, T. S. (2002). An efficient and convenient procedure for the preparation of 1,1-diacetates from aldehydes catalyzed by H2NSO3H. Green Chemistry, 4, 255–256. DOI: 10.1039/b200219a.

    Article  CAS  Google Scholar 

  • Kalbasi, R. J., Massah, A. J., & Shafiei, A. R. (2011). Synthesis and characterization of BEA-SO3H as an efficient and chemoselective acid catalyst. Journal of Molecular Catalysis A: Chemical, 335, 51–59. DOI: 10.1016/j.molcata.2010.11.013.

    Article  CAS  Google Scholar 

  • Kannasani, R. K., Satyanarayana-Peruri, V. V., & Battula, S. R. (2012). NaHSO4-SiO2 as an efficient and chemoselective catalyst, for the synthesis of acylal from aldehydes under, solvent-free conditions. Chemistry Central Journal, 6, 136. DOI: 10.1186/1752-153x-6-136.

    Article  CAS  Google Scholar 

  • Khan, A. T., Choudhury, L. H., & Ghosh, S. (2005). Acetonyltriphenylphosphonium bromide (ATPB): A versatile reagent for the acylation of alcohols, phenols, thiols and amines and for 1,1-diacylation of aldehydes under solvent-free conditions. European Journal of Organic Chemistry, 13, 2782–2787. DOI: 10.1002/ejoc.200500066.

    Article  Google Scholar 

  • Kiasat, A. R., & Fallah-Mehrjardi, M. (2008). B(HSO4)3: a novel and efficient solid acid catalyst for the regioselective conversion of epoxides to thiocyanohydrins under solventfree conditions. Journal of The Brazilian Chemical Society, 19, 1595–1599. DOI: 10.1590/s0103-50532008000800020.

    Article  CAS  Google Scholar 

  • Kochhar, K. S., Bal, B. S., Deshpande, R. P., Rajadhyaksha, S. N., & Pinnick, H. W. (1983). Protecting groups in organic synthesis. Part 8. Conversion of aldehydes into geminal diacetates. Journal of Organic Chemistry, 48, 1765–1767. DOI: 10.1021/jo00158a036.

    Article  CAS  Google Scholar 

  • Karimi, B., Seradj, H., & Ebrahimian, G. R. (2000). Mild and efficient conversion of aldehydes to 1,1-diacetates catalyzed with N-bromosuccinimide (NBS). Synlett, 2000, 623–624. DOI: 10.1055/s-2000-6616.

    Article  Google Scholar 

  • Li, Y. Q. (2000). A rapid and convenient synthesis of 1,1-diacetates from aldehydes and acetic anhydride catalyzed by PVC-FeCl3 catalyst. Synthetic Communications, 30, 3913–3917. DOI: 10.1080/00397910008086948.

    Article  CAS  Google Scholar 

  • Liu, Q., Ai, H. M., & Feng, S. A. (2012). Ultrasound-assisted synthesis of acylals from aldehydes using Mg(CH3SO3)2-HOAC. Synthetic Communications, 42, 122–127. DOI: 10.1080/00397911.2010.523150.

    Article  CAS  Google Scholar 

  • Massah, A. R., Kalbasi, R. J., & Shafiei, A. (2012). ZSM-5-SO3H as a novel, efficient, and reusable catalyst for the chemoselective synthesis and deprotection of 1,1-diacetates under eco-friendly conditions. Monatshefte für Chemie — Chemical Monthly, 143, 643–652. DOI: 10.1007/s00706-011-0646-8.

    Article  CAS  Google Scholar 

  • Mouriño, A. (1978). An improved synthesis of 1α,3β-dihydroxycholesta-5,7-diene. Synthic Communicatins, 8, 117–125. DOI: 10.1080/00397917808062105.

    Article  Google Scholar 

  • Nagy, N. M., Jakab, M. A., Konya, J., & Antus, S. (2002). Convenient preparation of 1,1-diacetates from aromatic aldehydes catalysed by zinc-montmorillonite. Applied Clay Science, 21, 213–216. DOI: 10.1016/s0169-1317(02)00066-2.

    Article  CAS  Google Scholar 

  • Nouri Sefat, M., Deris, A., & Niknam, K. (2011). Preparation of silica-bonded propyl-diethylene-triamine-N-sulfamic acid as a recyclable catalyst for chemoselective synthesis of 1,1-diacetates. Chinese Journal of Chemistry, 29, 2361–2367. DOI: 10.1002/cjoc.201180403.

    Article  CAS  Google Scholar 

  • Pourmousavi, S. A., & Zinati, Z. (2009). H2SO4-silica as an efficient and chemoselective catalyst for the synthesis of acylal from aldehydes under solvent-free conditions. Turkish Journal of Chemistry, 33, 385–392. DOI: 10.3906/kim-0805-45.

    CAS  Google Scholar 

  • Rabindran Jermy, B., & Pandurangan, A. (2008). Synthesis of geminal diacetates (acylals) using heterogeneous H3PW12O40 supported MCM-41 molecular sieves. Catalysis Communications, 9, 577–583. DOI: 10.1016/j.catcom.2007.02.016.

    Article  CAS  Google Scholar 

  • Reddy, A. V., Ravinder, K., Reddy, V. L. N., Ravinkanth, V., & Yenkateswarlu, Y. (2003). Amberlyst-15-catalyzed efficient synthesis of 1,1-diacetates from aldehydes. Synthetic Communications, 33, 1531–1536. DOI: 10.1081/scc-120018771.

    Article  CAS  Google Scholar 

  • Romanelli, G. P., Thomas, H. J., Baronettic, G. T., & Autino, J. C. (2003). Solvent-free catalytic preparation of 1,1-diacetates from aldehydes using a Wells-Dawson acid (H6P2W18O62 · 24H2O). Tetrahedron Letters, 44, 1301–1303. DOI: 10.1016/s0040-4039(02)02817-4.

    Article  CAS  Google Scholar 

  • Roy, S. C., & Banerjee, B. (2002). A mild and efficient method for the chemoselective synthesis of acylals from aldehydes and their deprotections catalysed by ceric ammonium nitrate. Synlett, 2002, 1677–1688. DOI: 10.1055/s-2002-34243.

    Article  Google Scholar 

  • Saini, A., Kumar, S., & Sandhu, J. S. (2007). RuCl3 · xH2O: A new efficient catalyst for facile preparation of 1,1-diacetates from aldehydes. Synthetic Communications, 38, 106–113. DOI: 10.1080/00397910701650831.

    Article  Google Scholar 

  • Sajjadifar, S., Mirshokraie, S. A., Javaherneshan, N., & Louie, O. (2012). SBSA as a new and efficient catalyst for the one-pot green synthesis of benzimidazole derivatives at room temperature. American Journal of Organic Chemistry, 2, 1–6. DOI: 10.5923/j.ajoc.20120202.01.

    Article  Google Scholar 

  • Sajjadifar, S. (2013). Boron sulfonic acid (2008–2012). International Journal of ChemTech Research, 5, 385–389.

    CAS  Google Scholar 

  • Sajjadifar, S., & Louie, O. (2013). Regioselective thiocyanation of aromatic and heteroaromatic compounds by using boron sulfonic acid as a new, efficient, and cheap catalyst in water. Journal of Chemistry, 2013, 674946. DOI: 10.1155/2013/674946.

    Google Scholar 

  • Sajjadifar, S., & Rezayati, S. (2013). A simple and new method for the synthesis of 1,5-benzodiazepine derivatives catalyzed by boron sulfonic acid in solvent H2O/EtOH. International Journal of ChemTech Research, 5, 1964–1968.

    CAS  Google Scholar 

  • Sajjadifar, S., Khosravani, E., & Shiri, S. (2013). Benzimidazole synthesis by using boron sulfonic acid as a new and efficient catalyst at room temperature. International Journal of ChemTech Research, 5, 1969–1976.

    CAS  Google Scholar 

  • Sandberg, M., & Sydnes, L. K. (1998). The chemistry of acylals. Part II. Formation of nitriles by treatment of acylals with trimethylsilyl azide in the presence of a Lewis acid. Tetrahedron Letters, 39, 6361–6364. DOI: 10.1016/s0040-4039(98)01309-4.

    Article  Google Scholar 

  • Sandberg, M., & Sydnes, L. K. (2000). The chemistry of acylals. 3. Cyanohydrin esters from acylals with cyanide reagents. Organic Letters, 2, 687–689. DOI: 10.1021/ol005535b.

    Article  CAS  Google Scholar 

  • Sharifi, A., Abaee, M. S., Tavakkoli, A., & Mirzaei, M. (2008). An efficient and general procedure for room-temperature synthesis of benzofurans under solvent-free conditions using KF/Al2O3. Journal of the Iranian Chemical Society, 5, S113–S117.

    Article  CAS  Google Scholar 

  • Shelke, K., Sapkal, S., Kategaonkar, A., Shingate, B., & Shingare, M. S. (2009). An efficient and green procedure for the preparation of acylals from aldehydes catalyzed by alum [KAl(SO4)2 · 12H2O]. South African Journal of chemistry, 62, 109–112.

    CAS  Google Scholar 

  • Smitha, G., & Reddy, C. S. (2003). A facile and efficient ZrCl4 catalyzed conversion of aldehydes to geminal-diacetates and dipivalates and their cleavage. Tetrahedron, 59, 9571–9576. DOI: 10.1016/j.tet.2003.10.002.

    Article  CAS  Google Scholar 

  • Sydness, L. K., & Sandberg, M. (1997). The chemistry of acylals. Part I. The reactivity of acylals towards Grignard and organolithium reagents. Tetrahedron, 53, 12679–12690. DOI: 10.1016/s0040-4020(97)00789-8.

    Google Scholar 

  • Tamami, B., Firouzabadi, H., Ebrahimzadeh, F., & Fadavi, A. (2009). Poly (N-bromoacrylamide): an efficient and useful catalyst for the protection of carbonyl compounds as dithiolanes, dithianes and oxathiolanes under solvent-free and microwave conditions. Journal of the Iranian Chemical Society, 6, 722–728.

    Article  CAS  Google Scholar 

  • van Heerden, F. R., Huyser, J. J., Bradley, D., Williams, G., & Holzapfel, C. W. (1998). Palladium-catalysed substitution reactions of geminal allylic diacetates. Tetrahedron Letters, 39, 5281–5284. DOI: 10.1016/s0040-4039(98)01000-4.

    Article  Google Scholar 

  • Yadav, J. S., Reddy, B. V. S., & Srihari, P. (2001). Scandium triflate catalyzed allylation of acetals and gem-diacetates: A facile synthesis of homoallyl ethers and acetates. Synlett, 2001, 673–675. DOI: 10.1055/s-2001-13379.

    Google Scholar 

  • Ying, J. Y., Mehnert, C. P., & Wong, M. S. (1999). Synthesis and applications of supramolecular-templated mesoporous materials. Angewwandte Chemie International Edition, 38, 56–77. DOI: 10.1002/(sici)1521-3773(19990115)38:1/2〈56::aid-anie56〉3.0.co;2-e.

    Article  CAS  Google Scholar 

  • Zare, A., Hasaninejad, A., Rostami, E., Moosavi-Zare, A. R., Merajoddin, M., Arghoon, A., Pishahang, N., & Shekouhy, M. (2009). LiHSO4/SiO2 as a new, efficient and reusable catalytic system for the chemoselective conversion of aldehydes to acylals under solvent-free conditions. E-Journal of Chemistry, 6, S390–S396. DOI: 10.1155/2009/953175.

    Article  CAS  Google Scholar 

  • Zolfigol, M. A., Vahedi, H. H., Massoudi, A. H., Sajjadifar, S., Louie, O., & Javaherneshan, N. (2011). Mild and efficient one pot synthesis of benzoimidazoles from aldehyde by using BSA a new catalyst. Clinical Biochemistry, 44, S219. DOI: 10.1016/j.clinbiochem.2011.08.973.

    Article  Google Scholar 

  • Zolfigol, M. A., Khazaei, A., Mokhlesi, M., Vahedi, H., Sajadifar, S., & Pirveysian, M. (2012). Heterigeneous and catalytic thiocyanation of aromatic compounds in aqueous media. Phosphorus, Sulfur, and Silicon and the Related Elements, 187, 295–304. DOI: 10.1080/10426507.2011.610846.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Sajjadifar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajjadifar, S., Rezayati, S. Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature. Chem. Pap. 68, 531–539 (2014). https://doi.org/10.2478/s11696-013-0480-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0480-z

Keywords

Navigation