Skip to main content
Log in

Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x Mn x O in cellulose conversion

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Wurtzite-type Zn1−x Mn x O (x = 0, 0.03, 0.05, 0.07) nanostructures were successfully synthesised using a simple microwave-assisted hydrothermal route and their catalytic properties were investigated in the cellulose conversion. The morphology of the nanocatalysts is dopant-dependent. Pure ZnO presented multi-plate morphology with a flower-like shape of nanometric sizes, while the Zn0.97Mn0.03O sample is formed by nanoplates with the presence of spherical nanoparticles; the Zn0.95Mn0.05O and Zn0.93Mn0.07O samples are mainly formed by nanorods with the presence of a small quantity of spherical nanoparticles. The catalyst without Mn did not show any catalytic activity in the cellulose conversion. The Mn doping promoted an increase in the density of weak acid sites which, according to the catalytic results, favoured promotion of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avansi, W., Jr., Ribeiro, C., Leite, E. R., & Mastelaro, V. R. (2011). An efficient synthesis route of Na2V6O16 · nH2O nanowires in hydrothermal conditions. Materials Chemistry and Physics, 127, 56–61. DOI: 10.1016/j.matchemphys.2011.01.017.

    Article  CAS  Google Scholar 

  • Azzouz, A., Nistor, D., Miron, D., Ursu, A. V., Sajin, T., Monette, F., Niquette, P., & Hausler, R. (2006). Assessment of acid-base strength distribution of ion-exchanged montmorillonites through NH3 and CO2-TPD measurements. Thermochimica Acta, 449, 27–34. DOI: 10.1016/j.tca.2006.07.019.

    Article  CAS  Google Scholar 

  • Bicker, M., Endres, S., Ott, L., & Vogel, H. (2005). Catalytical conversion of carbohydrates in subcritical water: A new chemical process for lactic acid production. Journal of Molecular Catalysis A: Chemical, 239, 151–157. DOI: 10.1016/j.molcata.2005.06.017.

    Article  CAS  Google Scholar 

  • Corma, A., Iborra, S., & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chemical Reviews, 107, 2411–2502. DOI: 10.1021/cr050989d.

    Article  CAS  Google Scholar 

  • Dondi, M., Matteucci, F., Cruciani, G., Gasparotto, G., & Tobaldi, D. M. (2007). Pseudobrookite ceramic pigments: Crystal structural, optical and technological properties. Solid State Sciences, 9, 362–369. DOI: 10.1016/j.solidstatesciences.2007.03.001.

    Article  CAS  Google Scholar 

  • dos Santos, J. B., da Silva, F. L., Altino, F. M. R. S., da Silva Moreira, T., Meneghetti, M. R., & Meneghetti, S. M. P. (2013). Cellulose conversion in the presence of catalysts based on Sn(IV). Catalysis Science & Technology, 3, 673–678. DOI: 10.1039/c2cy20457f.

    Article  Google Scholar 

  • Fajardo, H. V., Longo, E., Probst, L. F. D., Valentini, A., Carreño, N. L. V., Nunes, M. R., Maciel, A. P., & Leite, E. R. (2008). Influence of rare earth doping on the structural and catalytic properties of nanostructured tin oxide. Nanoscale Research Letters, 3, 194–199. DOI: 10.1007/s11671-008-9135-3.

    Article  CAS  Google Scholar 

  • Girisuta, B., Janssen, L. P. B. M., & Heeres, H. J. (2007). Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Industrial & Engineering Chemistry Research, 46, 1696–1708. DOI: 10.1021/ie061186z.

    Article  CAS  Google Scholar 

  • Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 106, 4044–4098. DOI: 10.1021/cr068360d.

    Article  CAS  Google Scholar 

  • Kemdeo, S. M., Sapkal, V. S., & Chaudhari, G. N. (2010). TiO2-SiO2 mixed oxide supported MoO3 catalyst: Physicochemical characterization and activities in nitration of phenol. Journal of Molecular Catalysis A: Chemical, 323, 70–77. DOI: 10.1016/j.molcata.2010.03.017.

    Article  CAS  Google Scholar 

  • Komanoya, T., Kobayashi, H., Hara, K., Chun, W. J., & Fukuoka, A. (2011). Catalysis and characterization of carbon-supported ruthenium for cellulose hydrolysis. Applied Catalysis A: General, 407, 188–194. DOI: 10.1016/j.apcata. 2011.08.039.

    Article  CAS  Google Scholar 

  • Larson, A. C., & Von Dreele, R. B. (1994). General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86-748. Los Alamos, NM, USA: Los Alamos National Laboratory.

    Google Scholar 

  • Luo, C., Wang, S., & Liu, H. (2007). Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angewandte Chemie International Edition, 46, 7636–7639. DOI: 10.1002/anie.200702661.

    Article  CAS  Google Scholar 

  • Milao, T. M., de Mendonça, V. R., Araújo, V. D., Avansi, W., Ribeiro, C., Longo, E., & Bernardi, M. I. B. (2012). Microwave hydrothermal synthesis and photocatalytic performance of ZnO and M:ZnO nanostructures (M = V, Fe, Co). Science of Advanced Materials, 4, 54–60. DOI: 10.1166/sam.2012.1252.

    Article  CAS  Google Scholar 

  • Oliveira, J. F. A., Milão, T. M., Araújo, V. D., Moreira, M. L., Longo, E., & Bernardi, M. I. B. (2011). Influence of different solvents on the structural, optical and morphological properties of CdS nanoparticles. Journal of Alloys and Compounds, 509, 6880–6883. DOI: 10.1016/j.jallcom.2011.03.171.

    Article  CAS  Google Scholar 

  • Onda, A., Ochi, T., & Yanagisawa, K. (2008). Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chemistry, 10, 1033–1037. DOI: 10.1039/b808471h.

    Article  CAS  Google Scholar 

  • Robles-Nuñez, J., Chiñas-Castillo, F., Sanchez-Rubio, M., Lara-Romero, J., Huirache-Acuña, R., Jimenez-Sandoval, S., & Alonso-Nuñez, G. (2012). Improved hydrothermal synthesis of MoS2 sheathed carbon nanotubes. Chemical Papers, 66, 1130–1136. DOI: 10.2478/s11696-012-0227-2.

    Article  Google Scholar 

  • Stroppa, D. G., Montoro, L. A., Beltrán, A., Conti, T. G., da Silva, R. O., Andrés, J., Longo, E., Leite, E. R., & Ramirez, A. J. (2009). Unveiling the chemical and morphological features of Sb-SnO2 nanocrystals by the combined use of highresolution transmission electron microscopy and ab initio surface energy calculations. Journal of the American Chemical Society, 131, 14544–14548. DOI: 10.1021/ja905896u.

    Article  CAS  Google Scholar 

  • Zhang, Y., Xue, Y., & Yu, M. (2011). Hydrothermal synthesis of core-shell structured PS@GdPO4:Tb3+/Ce3+ spherical particles and their luminescence properties. Chemical Papers, 65, 29–35. DOI: 10.2478/s11696-010-0088-5.

    Article  Google Scholar 

  • Zou, Y. L., Li, Y., Li, J. G., & Xie, W. J. (2012). Hydrothermal synthesis of momordica-like CuO nanostructures using egg white and their characterisation. Chemical Papers, 66, 278–283. DOI: 10.2478/s11696-012-0139-1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto V. Fajardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardi, M.I.B., Araújo, V.D., Ribeiro, C. et al. Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x Mn x O in cellulose conversion. Chem. Pap. 68, 1213–1218 (2014). https://doi.org/10.2478/s11696-013-0468-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0468-8

Keywords

Navigation